پیش آگهی کووید-۱۹ با مصرف مهارکننده های سیستم رنین-آنژیوتانسین -آلدوسترون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه داروشناسی و سم شناسی، دانشکده داروسازی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

2 انفورماتیک پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

3 بیماریهای عفونی و گرمسیری، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، کشهد، ایران

4 مرکز پایش سلامت کارکنان، دانشگاه علوم پزشکی مشهد، مشهد، ایران

5 دانشیار داروشناسی و سم شناسی، دانشکده داروسازی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

چکیده

زمینه و هدف: این مطالعه با هدف بیان پیش آگهی کووید-۱۹ با سابقه مصرف داروهای موثر بر سیستم رنین-آنژیوتانسین در بیماران مبتلا انجام گرفت.
روش اجرا: در این پژوهش مشاهده ای تحلیلی- مقطعی اطلاعات بیمارانی که با علائم مشکوک به بیماری کووید-۱۹ به بیمارستان‌ امام رضا (ع) از اسفند سال 1398 تا اردیبهشت سال 1400 مراجعه نموده بودند، از سامانه رجیستری بیمارستان امام رضا (ع) مشهد استخراج گردید. اطلاعات جمعیت شناختی ، بیماریهای زمینه ای و مصرف همزمان سایر داروها، داروهای مورد استفاده در درمان کووید، درجه حرارت بدن، سطح اکسیژن خون، پیشرفت کووید-۱۹، در روز پذیرش و روز ترخیص در 139 بیمار مبتلا به کووید-۱۹ با سابقه مصرف داروهای موثر بر سیستم رنین-آنژیوتانسین در مدیریت فشار خون (گروه A) با 67 بیمار مبتلابه کووید-۱۹ که هیچگونه سابقه مصرف داروهای داروهای موثر بر سیستم رنین-آنژیوتانسین در مدیریت فشار خون نداشتند مقایسه شد. مدت زمان بستری و پیامد نهایی (بهبود/ مرگ) نیز برای بیماران ثبت شد.
یافته‌ها:
ارتباط آماری معناداری بین سابقه مصرف داروهای موثر بر سیستم رنین-آنژیوتانسین با میزان مرگ و میر (0.72= p) و پارامترهای بالینی مانند شدت بیماری کووید-۱۹ (0.64= (p، تب (0.72= (pو سطح اکسیژن موجود در خون (0.40= (pوجود نداشت. ارتباط معنا داری بین مصرف داروهای موثر بر سیستم رنین-آنژیوتانسین و تعداد روزهای بستری در هنگام ترخیص از بیمارستان در دو گروه مشاهده نشد.
نتیجه‌گیری:
سابقه مصرف داروهای موثر بر سیستم رنین-آنژیوتانسین نقش عمده ای در تشدید بیماری کووید-۱۹ و یا افزایش مرگ و میر در بیماران مبتلا به پرفشاری خون ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

COVID-19 prognosis with the use of renin-angiotensin-aldosterone system inhibitors

نویسندگان [English]

  • Shima Shahrabadi 1
  • Saeid Eslami 2
  • Fereshteh Sheybani 3
  • Masoumeh Akbari 4
  • Zhila Taherzadeh 5
1 Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of Medical Informatics,, School of Medicin, Mashhad University of Medical Sciences, Mashhad, Iran
3 Departments of Infectious Diseases and Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
4 Persian cohort research center, Mashhad University of Medical Sciences, Mashhad, Iran
5 Faculty of Pharmacology and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
چکیده [English]

Objective: This study was carried out with the aim of expressing the prognosis of COVID-19 with a history of taking drugs affecting the renin-angiotensin system in affected patients.
Method: In this cross-sectional observational-analytical study, the information of patients who were referred to Imam Reza (AS) hospital with suspected symptoms of COVID-19 from March 2018 to May 1400, was extracted from the registry system of Imam Reza (AS) Mashhad Hospital. Demographic information, underlying diseases and simultaneous use of other drugs, drugs used in the treatment of COVID-19, body temperature, blood oxygen level, progression of COVID-19, on the day of admission and the day of discharge in 139 patients with COVID-19 with history of use drugs affecting the renin-angiotensin system in the management of blood pressure (group A) were compared with 67 patients with COVID-19 who had no history of taking drugs affecting the renin-angiotensin system in the management of blood pressure. The duration of hospitalization and the final outcome (improvement/death) were also recorded for the patients.
Results: There was no statistically significant relationship between the history of taking drugs affecting the renin-angiotensin system with the mortality rate (p=0.72) and clinical parameters such as the severity of the COVID-19 disease (p=0.64), fever (p=0.72) and the level of oxygen in the blood (p=0.40).
Conclusion: The history of taking drugs affecting the renin-angiotensin system does not play a major role in the exacerbation of the disease of COVID-19 or the increase in mortality in patients with hypertension.

کلیدواژه‌ها [English]

  • Renin-angiotensin-aldosterone system
  • Covid-19
  • Coronavirus disease
  • Angiotensin-converting enzyme inhibitors
  • Angiotensin receptor blocker
  1. Griffin S. Covid-19: Commission describes “massive global failures” of pandemic response. British Medical Journal Publishing Group; 2022.
  2. Sachs JD, Karim SSA, Aknin L, Allen J, Brosbøl K, Colombo F, et al. The Lancet Commission on lessons for the future from the COVID-19 pandemic. The Lancet. 2022;400(10359):1224-80.
  3. Garg S, Kim L, Whitaker M, O’Halloran A, Cummings C, Holstein R, et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019—COVID-NET, 14 States, March 1–30, 2020. Morbidity and mortality weekly report. 2020;69(15):458.
  4. Piva S, Filippini M, Turla F, Cattaneo S, Margola A, De Fulviis S, et al. Clinical presentation and initial management critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Brescia, Italy. Journal of critical care. 2020;58:29-33.
  5. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging (albany NY). 2020;12(7):6049.
  6. Pareek M, Bangash MN, Pareek N, Pan D, Sze S, Minhas JS, et al. Ethnicity and COVID-19: an urgent public health research priority. The Lancet. 2020;395(10234):1421-2.
  7. Zhang P, Zhu L, Cai J, Lei F, Qin J-J, Xie J, et al. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circulation research. 2020;126(12):1671-81.
  8. Vaduganathan M, Vardeny O, Michel T, McMurray JJ, Pfeffer MA, Solomon SD. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. New England Journal of Medicine. 2020;382(17):1653-9.
  9. Marfella R, D'Onofrio N, Mansueto G, Grimaldi V, Trotta MC, Sardu C, et al. Glycated ACE2 reduces anti-remodeling effects of renin-angiotensin system inhibition in human diabetic hearts. Cardiovasc Diabetol. 2022;21(1):146.
  10. Wu C, Ye D, Mullick AE, Li Z, Danser AHJ, Daugherty A, et al. Effects of Renin-Angiotensin Inhibition on ACE2 and TMPRSS2 Expression: Insights into COVID-19. bioRxiv. 2020.
  11. South AM, Tomlinson L, Edmonston D, Hiremath S, Sparks MA. Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol. 2020;16(6):305-7.
  12. Rockx B, Baas T, Zornetzer GA, Haagmans B, Sheahan T, Frieman M, et al. Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection. J Virol. 2009;83(14):7062-74.
  13. Klein N, Gembardt F, Supe S, Kaestle SM, Nickles H, Erfinanda L, et al. Angiotensin-(1-7) protects from experimental acute lung injury. Crit Care Med. 2013;41(11):e334-43.
  14. Sarzani R, Giulietti F, Di Pentima C, Giordano P, Spannella F. Disequilibrium between the classic renin-angiotensin system and its opposing arm in SARS-CoV-2-related lung injury. Am J Physiol Lung Cell Mol Physiol. 2020;319(2):L325-L36.
  15. Hofmann H, Geier M, Marzi A, Krumbiegel M, Peipp M, Fey GH, et al. Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun. 2004;319(4):1216-21.
  16. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-9.
  17. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-8.
  18. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14-20.
  19. Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, et al. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008;18(2):290-301.
  20. Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5).
  21. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9.
  22. Haga S, Yamamoto N, Nakai-Murakami C, Osawa Y, Tokunaga K, Sata T, et al. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral Proc Natl Acad Sci U S A. 2008;105(22):7809-14.
  23. de Ligt M, Hesselink MKC, Jorgensen J, Jocken JWE, Blaak EE, Goossens GH. The angiotensin II type 1 receptor blocker valsartan in the battle against COVID-19. Obesity (Silver Spring). 2021;29(9):1423-6.
  24. Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension. 2004;43(5):970-6.
  25. Soler MJ, Ye M, Wysocki J, William J, Lloveras J, Batlle D. Localization of ACE2 in the renal vasculature: amplification by angiotensin II type 1 receptor blockade using telmisartan. Am J Physiol Renal Physiol. 2009;296(2):F398-405.
  26. Sukumaran V, Tsuchimochi H, Tatsumi E, Shirai M, Pearson JT. Azilsartan ameliorates diabetic cardiomyopathy in young db/db mice through the modulation of ACE-2/ANG 1-7/Mas receptor cascade. Biochem Pharmacol. 2017;144:90-9.
  27. de Simone G. Position statement of the ESC Council on Hypertension on ACE-inhibitors and angiotensin receptor blockers. Eur Soc Cardiol. 2020;13.
  28. Bozkurt B, Kovacs R, Harrington B. Joint HFSA/ACC/AHA statement addresses concerns re: using RAAS antagonists in COVID-19. Journal of cardiac failure. 2020;26(5):37
  29. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. Jama. 2020;323(16):1574-81.
  30. Wu C, Chen X, Cai Y, Zhou X, Xu S, Huang H, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA internal medicine. 2020;180(7):934-43.
  31. Schultz WM, Kelli HM, Lisko JC, Varghese T, Shen J, Sandesara P, et al. Socioeconomic status and cardiovascular outcomes: challenges and interventions. Circulation. 2018;137(20):2166-78.
  32. Kew KM, Malik P, Aniruddhan K, Normansell R. Shared decision‐making for people with Cochrane Database of Systematic Reviews. 2017(10).
  33. Souza ACR, Vasconcelos AR, Prado PS, Pereira CPM. Zinc, vitamin D and vitamin C: perspectives for COVID-19 with a focus on physical tissue barrier integrity. Frontiers in nutrition. 2020;7:295.
  34. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-81.
  35. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The lancet respiratory medicine. 2020;8(4):e21.
  36. Nouri-Vaskeh M, Kalami N, Zand R, Soroureddin Z, Varshochi M, Ansarin K, et al. Comparison of losartan and amlodipine effects on the outcomes of patient with COVID-19 and primary hypertension: A randomised clinical trial. Int J Clin Pract. 2021;75(6):e14124.
  37. Huang Z, Cao J, Yao Y, Jin X, Luo Z, Xue Y, et al. Erratum to the effect of RAS blockers on the clinical characteristics of COVID-19 patients with hypertension. Ann Transl Med. 2020;8(17):1119.
  38. Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin–angiotensin–aldosterone system blockers and the risk of Covid-19. New England Journal of Medicine. 2020;382(25):2431-40.
  39. Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturrate E, Johnson SB, et al. Renin–angiotensin–aldosterone system inhibitors and risk of Covid-19. New England Journal of Medicine. 2020;382(25):2441-8.
  40. Gnanenthiran SR, Borghi C, Burger D, Caramelli B, Charchar F, Chirinos JA, et al. Renin‐Angiotensin System Inhibitors in Patients With COVID‐19: A Meta‐Analysis of Randomized Controlled Trials Led by the International Society of Hypertension. Journal of the American Heart Association. 2022;11(17):e026143.
  41. Zhang X, Yu J, Pan LY, Jiang HY. ACEI/ARB use and risk of infection or severity or mortality of COVID-19: A systematic review and meta-analysis. Pharmacol Res. 2020;158:104927.
  42. ACE A. Antihypertensive drugs and risk of COVID-19? Nature. 2003;426:450-54.
  43. Ferrario CM, Ahmad S, Groban L. Mechanisms by which angiotensin-receptor blockers increase ACE2 levels. Nature Reviews Cardiology. 2020;17(6):378-.
  44. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7).
  45. Guo X, Zhu Y, Hong Y. Decreased mortality of COVID-19 with renin-angiotensin-aldosterone system inhibitors therapy in patients with hypertension: a meta-analysis. Hypertension. 2020;76(2):e13-e4.
  46. Ssentongo AE, Ssentongo P, Heilbrunn ES, Lekoubou A, Du P, Liao D, et al. Renin–angiotensin–aldosterone system inhibitors and the risk of mortality in patients with hypertension hospitalised for COVID-19: systematic review and meta-analysis. Open heart. 2020;7(2):e001353.
  47. Lee MM, Docherty KF, Sattar N, Mehta N, Kalra A, Nowacki AS, et al. Renin–angiotensin system blockers, risk of SARS-CoV-2 infection and outcomes from CoViD-19: systematic review and meta-a
  48. Wan Y, Graham R, Baric R, Li F. An analysis based on decade-long structural studies of SARS 3, JVI Accepted Manuscript Posted Online 29 January 2020. J Virol. 2020.
  49. Sahu S, Patil CR, Kumar S, Apparsundaram S, Goyal RK. Role of ACE2-Ang (1-7)-Mas axis in post-COVID-19 complications and its dietary modulation. Mol Cell Biochem. 2022;477(1):225-40.
  50. Muchtaridi M, Amirah SR, Harmonis JA, Ikram EHK. Role of Nuclear Factor Erythroid 2 (Nrf2) in the Recovery of Long COVID-19 Using Natural Antioxidants: A Systematic Review. Antioxidants (Basel). 2022;11(8).
  51. Matsushita K, Ding N, Kou M, Hu X, Chen M, Gao Y, et al. The relationship of COVID-19 severity with cardiovascular disease and its traditional risk factors: a systematic review and meta-analysis. Global heart. 2020;15(1).
  52. Li M, Wang Y, Ndiwane N, Orner MB, Palacios N, Mittler B, et al. The association of COVID-19 occurrence and severity with the use of angiotensin converting enzyme inhibitors or angiotensin-II receptor blockers in patients with hypertension. PLoS One. 2021;16(3):e0248652.
  53. Kumar S, Nikravesh M, Chukwuemeka U, Randazzo M, Flores P, Choday P, et al. Safety of ACEi and ARB in COVID‐19 management: A retrospective analysis. Clinical Cardiology. 2022;45(7):759-66.
  54. Mortensen EM, Nakashima B, Cornell J, Copeland LA, Pugh MJ, Anzueto A, et al. Population-based study of statins, angiotensin II receptor blockers, and angiotensin-converting enzyme inhibitors on pneumonia-related outcomes. Clinical infectious diseases. 2012;55(11):1466-73.
  55. Székács B, Várbíró S, Debreczeni L. High-dose ACEi might be harmful in COVID-19 patients with serious respiratory distress syndrome by leading to excessive bradykinin receptor activation. Physiology International. 2021;108(1):1-9.