Analysis of S gene (HBs Ag) mutation in chronic hepatitis B patients and determination of their acquired immune escape pattern

Document Type : Research Paper

Authors

1 MS, Biotechnology, Islamic Azad University, Science and Research Branch, Tehran, Iran.

2 Associated professor, Molecular genetics, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran.

3 MS, Biotechnology, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran

Abstract

Abstract
Background: Mutant strains resistant to nucleoside/nucleotide analogs of hepatitis B virus (HBV) emerge due to the prolonged usage and single nucleotide polymorphism (SNP) incidence and escape mutations. The current study aimed to detect the selective pressures and the immune-associated escape mutation in HBsAg (S) gene in chronically HBV-infected patients.
Materials and Methods: In this cross-sectional study in 2013, fifty patients with chronic hepatitis B in Karaj were divided into treated and untreated groups. The number of virus DNA copies was quantified by real-time PCR and S gene was sequenced. The effect of each SNP on S protein stability was predicted with 1-mutant and DDG free energy estimation.
Results: The lowest and the highest viral load in the serum samples were estimated 1.1 × 101/ml and 4.3 × 108/ml copies, respectively. The highest number of mutations leading to amino acid substitution includes Q101R, T115N, S143L, and Q129P was determined in one person who used drug was identified. In one patient without treatment, the M133T and L175S mutations were observed. The Q129P, S174N, and Y134C were also seen in others with a history of treatment. Of the 8 amino acid changes, L175S with DDG equal to 1.87 Kcal/mol had the greatest reduction effect on S protein stability.
Conclusion: According to these data, there is a relationship between the SNP of the virus S gene and the emergence of escape mutations. Findings of studies of escape mutations in human populations can influence the improvement of treatment and immunization against chronic hepatitis B infection.

Keywords


  1. Nassal M, Schaller H. Hepatitis B virus replication‐an update. Journal of viral hepatitis. 1996;3(5):217-26.
    2. Rabe B, Vlachou A, Panté N, Helenius A, Kann M. Nuclear import of hepatitis B virus capsids and release of
    the viral genome. Proceedings of the National Academy of Sciences. 2003;100(17):9849-54.
    3. Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev. 2000;64(1):51-68.
    4. Carman WF, Karayiannis P, Waters J, Thomas H, Zanetti A, Manzillo G, et al. Vaccine-induced escape mutant
    of hepatitis B virus. The lancet. 1990;336(8711):325-9.
    5. Avellon A, Echevarria JM. Frequency of hepatitis B virus ‘a’determinant variants in unselected Spanish
    chronic carriers. Journal of medical virology. 2006;78(1):24-36.
    6. Kramvis A, Kew M, Francois G. Hepatitis B virus genotypes. Vaccine. 2005;23(19):2409-23.
    7. Alavian SM, Fallahian F, Lankarani KB. The changing epidemiology of viral hepatitis B in Iran. Journal of
    Gastrointestinal and Liver Diseases. 2007;16(4):403.
    8. Livingston SE, Simonetti JP, Bulkow LR, Homan CE, Snowball MM, Cagle HH, et al. Clearance of hepatitis
    B e antigen in patients with chronic hepatitis B and genotypes A, B, C, D, and F. Gastroenterology. 2007;133(5):1452-
    7.
    9. Alavian SM, Hajarizadeh B, Ahmadzad-Asl M, Kabir A, Bagheri-Lankarani K. Hepatitis B Virus infection in
    Iran: A systematic review. Hepatitis monthly. 2008;8(4).
    10. Arababadi MK, Pourfathollah AA, Jafarzadeh A, Hassanshahi G, Rezvani ME. Association of exon 9 but not
    intron 8 VDR polymorphisms with occult HBV infection in south‐eastern Iranian patients. Journal of gastroenterology
    and hepatology. 2010;25(1):90-3.
    11. Poorolajal J, Majdzadeh R. Prevalence of chronic hepatitis B infection in Iran: a review article. Journal of
    research in medical sciences: the official journal of Isfahan University of Medical Sciences. 2009;14(4):249.
    12. Flink HJ, Van Zonneveld M, Hansen BE, De Man RA, Schalm SW, Janssen HL. Treatment with Peginterferon α-2b for HBeAg-positive chronic hepatitis B: HBsAg loss is associated with HBV genotype. The American
    journal of gastroenterology. 2006;101(2):297.
    13. Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention
    and control measures. Journal of viral hepatitis. 2004;11(2):97-107.
    14. Dienstag JL. Benefits and risks of nucleoside analog therapy for hepatitis B. Hepatology. 2009;49(S5):S112-
    S21.
    15. Nishijima N, Marusawa H, Ueda Y, Takahashi K, Nasu A, Osaki Y, et al. Dynamics of hepatitis B virus
    quasispecies in association with nucleos (t) ide analogue treatment determined by ultra-deep sequencing. PloS one.
    2012;7(4):e35052.
    16. Yeh C-T. Development of HBV S gene mutants in chronic hepatitis B patients receiving nucleotide/nucleoside
    analogue therapy. Antiviral therapy. 2010;15(3):471.
    17. Locarnini SA, Yuen L. Molecular genesis of drug-resistant and vaccine-escape HBV mutants. Antivir Ther.
    2010;15(3 Pt B):451-61.
    18. Hammitt LL HT, Fiore AE, Zanis C, Hummel KB, Dunaway E, Bulkow L, McMahon BJ. . Hepatitis B
    immunity in children vaccinated with recombinant hepatitis B vaccine beginning at birth: a follow-up study at 15 years.
    Vaccine. 2007;25:6958-64.
    19. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in
    hepatitis B virus infection. Journal of hepatology. 2009;51(3):581-92.
    20. Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC, McDade H. Viral dynamics in hepatitis B virus
    infection. Proceedings of the National Academy of Sciences. 1996;93(9):4398-402.
    21. Zoulim F, Locarnini S. Hepatitis B virus resistance to nucleos (t) ide analogues. Gastroenterology.
    2009;137(5):1593-608. e2.
    22. Yamamoto K HM, Tsuda F, Itoh K, Akahane Y, Yotsumoto S, Okamoto H, Miyakawa Y, Mayumi M. .
    Naturally occurring escape mutants of hepatitis B virus with various mutations in the S gene in carriers seropositive for
    antibody to hepatitis B surface antigen. Journal of virology. 1994;68:2671-6.
    23. Chen CH, Hung CH, Lee CM, Hu TH, Wang JH, Wang JC, et al. Pre-S deletion and complex mutations of
    hepatitis B virus related to advanced liver disease in HBeAg-negative patients. Gastroenterology. 2007;133(5):1466-74.
    24. W G. Diagnostic problems caused by HBsAg mutants—a consensus report of an expert meeting. Intervirology.
    2004;47:310-3.
    25. Block TM, Guo H, Guo J-T. Molecular virology of hepatitis B virus for clinicians. Clinics in liver disease.
    2007;11(4):685-706.
  2. 26. Cento V, Mirabelli C, Dimonte S, Salpini R, Han Y, Trimoulet P, et al. Overlapping structure of hepatitis B
    virus (HBV) genome and immune selection pressure are critical forces modulating HBV evolution. Journal of General
    Virology. 2013;94(1):143-9.
    27. Pollicino T, Isgrò G, Di Stefano R, Ferraro D, Maimone S, Brancatelli S, et al. Variability of reverse
    transcriptase and overlapping S gene in hepatitis B virus isolates from untreated and lamivudine-resistant chronic
    hepatitis B patients. Antivir Ther. 2009;14(5):649-54.
    28. Garrido E, Gariglio P, Jindadamrongwech S, Smith DR, Carrillo E, Coursaget P, et al. Diagnostic problems
    caused by HBsAg mutants–a consensus report of an expert meeting. Intervirology. 2004;47(6):310-3.
    29. Mahinrousta S, Sharafi H, Alavian S, Behnava B, Pouryasin A. Study of HBsAg escape mutations in chronic
    hepatitis B patients under treatment with nucleos (t) ide analogues. 2012.
    30. Sayan M, Şentürk Ö, Akhan S, Hülagü S, Cekmen M. Monitoring of hepatitis B virus surface antigen escape
    mutations and concomitantly nucleos (t) ide analog resistance mutations in Turkish patients with chronic hepatitis B.
    International Journal of Infectious Diseases. 2010;14:e136-e41.
    31. Lavanchy D. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. Journal of
    clinical virology. 2005;34:S1-S3.
    32. Sheldon J, Soriano V. Hepatitis B virus escape mutants induced by antiviral therapy. Journal of antimicrobial
    chemotherapy. 2008;61(4):766-8.
    33. Salpini R, Colagrossi L, Bellocchi MC, Surdo M, Becker C, Alteri C, et al. Hepatitis B surface antigen genetic
    elements critical for immune escape correlate with hepatitis B virus reactivation upon immunosuppression. Hepatology.
    2015;61(3):823-33.
    34. Pan CQ, Duan ZP, Bhamidimarri KR, Zou HB, Liang XF, Li J, et al. An algorithm for risk assessment and
    intervention of mother to child transmission of hepatitis B virus. Clinical gastroenterology and hepatology.
    2012;10(5):452-9.
    35. Oon CJ, Chen WN, Goo KS, Goh KT. Intra-familial evidence of horizontal transmission of hepatitis B virus
    surface antigen mutant G145R. Journal of Infection. 2000;41(3):260-4.
    36. Torresi J. The virological and clinical significance of mutations in the overlapping envelope and polymerase
    genes of hepatitis B virus. Journal of clinical virology. 2002;25(2):97-106.
    37. Hsieh Y-H, Su I-J, Wang H-C, Chang W-W, Lei H-Y, Lai M-D, et al. Pre-S mutant surface antigens in chronic
    hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis. 2004;25(10):2023-32.
    38. Salpini R, Svicher V, Cento V, Gori C, Bertoli A, Scopelliti F, et al. Characterization of drug-resistance
    mutations in HBV D-genotype chronically infected patients, naive to antiviral drugs. Antiviral research.
    2011;92(2):382-5.