Investigation the production of Metallo-β-lactamase and detecting blaVIM (1,2) , blaIMP(1,2) genes in Pseudomonas aeruginosa isolates in clinical samples of health centers in Khorasan Razavi province

Document Type : Research Paper

Authors

1 DVM, Ph.D, Professor Department of Pathobiology Faculty of Veterinary Medicin Ferdowsi University of Mashhad

2 Department of Pathobiology Faculty of Veterinary Medicin Ferdowsi University of Mashhad

3 DVM, Ph.D, Associate Professor Department of Pathobiology Faculty of Veterinary Medicin Ferdowsi University of Mashhad

Abstract

Introduction: Metallo-β-lactamase (MBL) produsing Pseudomonas aeruginosa has emerged as a threat to hospital infection control, due to its multi-drug resistance. Nowadays treatment of this infection is a serious problem due to spreading of antibiotic resistance. In this study, the frequency of blaVIM (1,2) , blaIMP(1,2) genes in P.aeruginosa strains isolated from samples of of health centers in Khorasan Razavi province was investigation by phenotypic and genotypic methods.
Materials and Methods: Totally 74samples of P.aeruginosa were collected from Khorasan Razavi's hospitals during the years of 2017-18  and identified by biochemical methods. In these strains, the production of Metallo-β-lactamase was measured by Combined disk method and the presence of blaVIM (1,2) , blaIMP(1,2) gene was investigated by multiplex PCR method.
Results: The highest rate of infection is related to urinary culture (45.94%). Totally, 38 samples (51.35%) were diagnosed as MBL by Combined disk method. in Multiplex PCR 11 samples (14.8%) contained blaVIM1 gene, 3 samples (4%) contained blaVIM2 genes. 12 samples (16.2%) contained blaIMP2 genes and None of the strains contain the blaIMP1 gene.
Conclusion:The blaVIM1 and blaIMP1 gene has the highest frequency among the samples and The highest rate of infection is related to the urine specimen. Considering the increasing of antibiotic resistance, identifying the type of resistance and selecting the appropriate drug can be a major step in the treatment and control of infections caused by this bacteria.

Keywords


1. Farhat U, Salman A, Jawad A. Antimicrobial
susceptibility and ESBL prevalence in seudomonas
aeruginosa isolated from burn patients in the North
West of Pakistan. Burns. 2009; 35: 1020_5
2. Arvanitidou M, Katikaridou E, Douboyas J, Tsakris
A. Prognostic factors for nosocomial bacteraemia
outcome: a prospective study in a Greek teaching
hospital. Journal of Hospital Infection. 2005;
61:219-224.
3. Eriksen HM, Iversen BG, Aavitsland P. Prevalence
of nosocomial infections in hospitals in Norway,
2002 and 2003. Journal of Hospital Infection 2005;
60:40-45.
4. Arabestani MR, Rajabpour M, Mashouf RY,
Alikhani MY, Mousavi SM. Expression of Effulux
Pump MexAB-OprM and OprD of Pseudomonas
aeruginosa Strains Isolated from Clinical Samples
using qRT-PCR. Archives of Iranian Medicine
(AIM). 2015;18(2).
5. Walsh T. The emergence and implications of
metallo-betalactamases in Gram-negative becteria.
Clinical Microbiology Infeciont. 2007; 13(1):113.
6. May TB, shinabarger D, Maharaj R, Kato J,Chu L,
DeVault JD, et al. Alginate synthesis by
Pseudomonas aeruginosa: a key pathogenicfactor
in chronic pulmonary infections of cystic fibrosis
patients. Clinical Microbiology Reviews.1991;
4(2):191-206.
7. Kouda S, Kuwahara R, Ohara M, Shigeta M,
Fujiwara T, Komatsuzawa H, et al. First isolation of
blaIMP- in a Pseudomonas aeruginosa in Japan.
Journal of Infection and Chemotherapy (JIC) 2007;
13: 276–7.10
8. Wilson R, Ruth Bd, Dowling Rb. Pseudomonas
aeruginosa and other related species. Thorax1998;
53:213-219.
9. George AJ. The New beta- lactamases. The New
England Journal of Medicine 2005; 352: 380-91
10. Wilke MS, Lovering AL, Strynadka NCJ. Â- lactam
antibiotic resistance: a current structural
perspective. Current Opinion in Microbiology
Journal. 2005; 8:525-33.
11. Neyestanaki DK, Mirsalehian A, Rezagholizadeh F,
Jabalameli F, Taherikalani M, Emaneini M.
Determination of extended spectrum betalactamases, metallo-beta-lactamases and AmpCbeta-lactamases among carbapenem resistant
Pseudomonas aeruginosa isolated from burn
patients. Burns. 2014;40(8):1556-61.
12. Tan J, Pitout JD, Guttman DS. New and sensitive
assay for determining Pseudomonas aeruginosa metallo-betalactamase resistance to imipenem.
Journal of Clinical Microbiology 2008; 46:1870-
1872
13. Rouhibiroun M,Amini K, Parvis M. Detection of
blaSPM1, blaIMP1, blaIMP2, blaVIM1 and
blaVIM2 metallobacterial genes in Pseudomonas
aeruginosa isolated from clinical specimens in
southern Tehran hospitals and evaluation of
antibiotic resistance. Journal of Isfahan Medical
School. 1394;33(343):1137-46.
14. Sadredinamin M, Hashemi A, Goudarzi H, Tarashi
S, Yousefi Nojookambari N, Taki E. Detection of
blaIMP, blaVIM and OprD Genes among
Pseudomonas aeruginosa Isolated from Burn
Patients . Journal of Mazandaran Univercity
Medical Sciences. 2016; 26 (138) :181-186
15. Mohseni N. The presence of efflux pump genes
MexAB-OprM and antibiotic resistance in
Pseudomonas aeruginosa isolates of human and
animal origin Using Multiplex PCR: Ferdowsi
University of Mashhad Faculty of Veterinary; 2017.
16. Saderi H, Lotfalipour H, Owlia P, Salimi H.
Detection of metallo-β-lactamase producing
Pseudomonas aeruginosa isolated from burn
patients in Tehran, Iran. Laboratory Medicine.
2010;41(10):609-12.
17. Shibata N, Doi Y, Yamane K, et al. PCR typing of
genetic determinants for metallo-β-Lactamases and
integrases carried by gram-negative bacteria
isolated in Japan, with focus on the class 3 integron.
Journal of Clinical Microbiology. 2003;41:5407-
5413.
18. Tsakris A, Pournaras S, Woodford N, et al.
Outbreak of infections caused by Pseudomonas
aeruginosa producing VIM-1 carbapenemase in
Greece. Journal of Clinical Microbiology.
2000;38:1290-1292.
19. Hirajata Y, Yamaguchi T, Nakano M, Izumikawa K,
Mine M, Aoki S, et al. Clinical and bacteriological
characteristics of IMP-type metallo- B-lactamase
producing paseudomonas aeruginosa. Clin infect
Dis. 2003;37: 26-32
20. Yu WL, Chuang YC, Walter-Rasmussen J.
Extended-spectrum Beta-lactamases in Taiwan:
Epidemiology, Detection, Treatment and Infection
Control. J Microbial Immunol Infect 2006; 39:264-
277.
21. Fazeli H, Moslehi TZ, Irajian GR, Salehi MR.
Determination of drug resistance patterns and
detection of bla-VIM gene in Pseudomonas
aeruginosa strains Isolated from burned patients in
the Emam Mosa Kazem hospital, Esfahan, Iran
(2008-9). Iran J Med Microbiol 2009; 3(4): 1-8. [In
Persian].
22. Maspi M, Ghanbari F, Darboie M, Sadeghifard N.
Prevalence of metallo-β-lactamase blaIMP and
blaVIM genes in urinary isolates of Pseudomonas
aeruginosa in Ilam. Journal of Ilam University of
Medical Sciences. 2015; 23 (2) :141-148
23. Abiri R, Pantea Mohammadi NS, Rezaei M.
Detection and genetic characterization of metallo-βlactamase IMP-1 and VIM-2 in Pseudomonas
aeruginosa strains from different hospitals in
Kermanshah, Iran. Jundishapur Journal of
microbiology. 2015;8(9).
24. Hemmati F, Soroori Zanjani R, Haghi F, Zeighami
H. Determination of Antibiotic Resistance Profile
and Frequency of Metallo-Beta- Lactamases in
Pseudomonas Aeruginosa Isolates. Journal of
Zanjan University of Medical Sciences. 2014; 22
(93) :77-85
25. Kali A, Srirangaraj S, Kumar S,Divya HA, Kalyani
A, Umadevi S. Detection of metallo-betalactamase
producing Pseudomonas aeruginosa in intensive
care units. Academy of Management Journal 2013,
6, 12, 686-693.
26. Rahim Zadeh Torabi L, Doody, Golshani.
Evaluation of prevalence of blaIMP and blaVIM
beta-lactamase genes in resistant pseudomonas
aeruginosa strains in Isfahan province health
centers. journal of the Mashhad University of
Medical Sciences. 2016Vol. 59, No. 3 P: 139-147
27. Amini K, Mobasseri P. Detection rate of metallo-βlactamase-expressing genes; blaVIM-1, blaVIM-2
and blaSPM-1 in Pseudomonas aeruginosa isolates.
Journal of Basic Medical Sciences 2017;2(1):41-
45.
28. Sedighi M, Vaez H, Moghoofeie M, Hadifar S,
Oryan G, Faghri J. Molecular detection of metalloβ-lactamase gene blaVIM-1 in imipenem-resistant
Pseudomonas aeruginosa strains isolated from
hospitalized patients in the hospitals of Isfahan.
Advanced Biomedical Research. 2015;4.
29. Mihani F, Khosravi A. Isolation of Pseudomonas
aeruginosa strains producing metallo beta
lactamases from infections in burned patients and
identification of blaIMP and blaVIMgenes by PCR.
Iran J Med Microbiol 2007; 1:23– 31.
30. Pitout JD, Chow BL, Gregson DB, Laupland KB,
Elsayed S, Church DL. Molecular epidemiology of metallo-βlactamase-producing Pseudomonas
aeruginosa in the Calgary Health Region:
emergence of VIM-2-producing isolates. J Clin
Microbiol 2007; 45:294–298.
31. Al-Charrakh AH, Al-Awadi SJ, Mohammed AS.
Detection of metallo-β-lactamase producing
Pseudomonas aeruginosa isolated from public and
private hospitals in Baghdad, Iraq. Faculty of
Medicine, Tehran University of Medical Sciences.
2016;54(2):107-13
32. Meawed TE, Gad DM. Clinical and Microbiological
Characteristics of Metallo β-lactamase producing
Pseudomonas aueroginosa in a sample of Egyptian
Patients with Bronchiectasis. The Egyptian Journal
of Medical Microbiology. 2017;26(3).