The effect of high-intensity interval training on calcitonin gene-dependent peptide in horseshoe muscles of male Wistar rats

Document Type : Research Paper

Authors

1 PhD student in exercise physiology, Department of Physical Education, Borujard Branch, Islamic Azad University, Borujard, Iran

2 Assistant Professor of Exercise Physiology, Department of Physical Education, Borujard Branch, Islamic Azad University, Borujard, Iran. (Responsible author)

3 Assistant Professor of Exercise Physiology, Department of Physical Education, Borujard Branch, Islamic Azad University, Borujard, Iran.

4 Associate Professor of Exercise Physiology, Department of Physical Education, Razi University, Kermanshah, Iran

Abstract

Background and Aim: Neuromuscular junction and synaptic transmission to skeletal muscle types may be affected by physical exercise. The aim of this study was to investigate the effect of a high-intensity interval training (HIIT) on CGRP gene expression in the horseshoe muscles of male Wistar rats.
Materials and Methods: In this experimental study, 12 male Wistar rats weighing 200-220 g, with a sleep cycle of 12.12, free access to food and water and an ambient temperature of 25 ° C, were randomly divided into two training and control groups. HIIT training consisted of 6 to 12 repetitions of a 2-minute periodic exercise with a one-minute break between each repetition. The workout was designed for 5 days a week and 6 weeks. The conditions of the control group were similar to the training group but they did not exercise. Finally, 48 hours after the last training session, rats were extracted by standard anesthesia, victim and horseshoe muscle method of all mice, and then Western blot method was used to determine the expression of CGRP protein. Significance level was considered p> 0.05.
Results: Statistical findings from the output of independent t-test for CGRP receptor protein expression values showed that implementation of six weeks of HIIT training protocol caused an increase in CGRP protein expression compared to the control group, which was not statistically significant (p = 0.078).

Keywords


  1.  

    1. Deschenes, M. R., Tufts, H. L., Noronha, A. L., & Li, S. (2019). Both aging and exercise training alter the rate of recovery of neuromuscular performance of male soleus muscles. Biogerontology, 20(2), 213-223. doi: 10.1007/s10522-018-9788-y
    2. Wilson, R. J., Drake, J. C., Cui, D., Ritger, M. L., Guan, Y., Call, J. A., . . . Yan, Z. (2019). Voluntary running protects against neuromuscular dysfunction following hindlimb ischemia-reperfusion in mice. Journal of applied physiology, 126(1), 193-201. doi: 10.1152/japplphysiol.00358.2018
    3. Guarino, S. R., Canciani, A., & Forneris, F. (2019). Dissecting the Extracellular Complexity of Neuromuscular Junction Organizers. Frontiers in molecular biosciences, 6, 156. doi: 10.3389/fmolb.2019.00156
    4. Popper, P., & Micevych, P. E. (1989). Localization of calcitonin gene-related peptide and its receptors in a striated muscle. Brain Research, 496(1-2), 180-186. doi: 10.1016/0006-8993(89)91064-0
    5. Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S., & Evans, R. M. (1982). Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature, 298(5871), 240-244. doi: 10.1038/298240a0
    6. Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R., & MacIntyre, I. (1985). Calcitonin gene-related peptide is a potent vasodilator. Nature, 313(5997), 54-56. doi: 10.1038/313054a0
    7. Russell, F. A., King, R., Smillie, S. J., Kodji, X., & Brain, S. D. (2014). Calcitonin gene-related peptide: physiology and pathophysiology. Physiological reviews, 94(4), 1099-1142. doi: 10.1152/physrev.00034.2013
    8. Fernandez, H. L., Ross, G. S., & Nadelhaft, I. (1999). Neurogenic calcitonin gene-related peptide: a neurotrophic factor in the maintenance of acetylcholinesterase molecular forms in adult skeletal muscles. Brain research, 844(1-2), 83-97. doi: 10.1016/s0006-8993(99)01891-0
    9. Dickerson, I. M. (2013). Role of CGRP-receptor component protein (RCP) in CLR/RAMP function. Current protein & peptide science, 14(5), 407-415. doi: 10.2174/13892037113149990057
    10. Calderó, J., Casanovas, A., Sorribas, A., & Esquerda, J. E. (1992). Calcitonin gene-related peptide in rat spinal cord motoneurons: subcellular distribution and changes induced by axotomy. Neuroscience, 48(2), 449-461. doi: 10.1016/0306-4522(92)90504-u
    11. Gharakhanlou, R., Chadan, S., & Gardiner, P. (1999). Increased activity in the form of endurance training increases calcitonin gene-related peptide content in lumbar motoneuron cell bodies and in sciatic nerve in the rat. Neuroscience, 89(4), 1229-1239. doi: 10.1016/s0306-4522(98)00406-0
    12. Evans, B. N., Rosenblatt, M. I., Mnayer, L. O., Oliver, K. R., & Dickerson, I. M. (2000). CGRP-RCP, a Novel Protein Required for Signal Transduction at Calcitonin Gene-related Peptide and Adrenomedullin Receptors*. Journal of Biological Chemistry, 275(40), 31438-31443. doi: https://doi.org/10.1074/jbc.M005604200
    13. Prado, M. A., Evans-Bain, B., Oliver, K. R., & Dickerson, I. M. (2001). The role of the CGRP-receptor component protein (RCP) in adrenomedullin receptor signal transduction. Peptides, 22(11), 1773-1781. doi: 10.1016/s0196-9781(01)00517-4
    14. Parnow, A., Gharakhanlou, R., Gorginkaraji, Z., Rajabi, S., Eslami, R., Hedayati, M., & Mahdian, R. (2012). Effects of endurance and resistance training on calcitonin gene-related Peptide and acetylcholine receptor at slow and fast twitch skeletal muscles and sciatic nerve in male wistar rats. International journal of peptides, 2012, 962651. doi: 10.1155/2012/962651
    15. Milanović, Z., Sporiš, G., & Weston, M. (2015). Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports medicine, 45(10), 1469-1481. doi: 10.1007/s40279-015-0365-0
    16. Polomoshnov, D. (2017). Acute HIT session induced changes and recovery in muscle activation level, voluntary force production and jump performance during 8 weeks of HIT training in recreationally endurance trained men. University of Jyväskylä, JYX Digital Repository. Retrieved from http://urn.fi/URN:NBN:fi:jyu-201701101120
    17. Gibala, M. J., & McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exercise and sport sciences reviews, 36(2), 58-63. doi: 10.1097/JES.0b013e318168ec1f
    18. Rognmo, Ø., Hetland, E., Helgerud, J., Hoff, J., & Slørdahl, S. A. (2004). High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. European journal of cardiovascular prevention and rehabilitation, 11(3), 216-222. doi: 10.1097/01.hjr.0000131677.96762.0c
    19. Warburton, D. E., McKenzie, D. C., Haykowsky, M. J., Taylor, A., Shoemaker, P., Ignaszewski, A. P., & Chan, S. Y. (2005). Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. The American journal of cardiology, 95(9), 1080-1084. doi: 10.1016/j.amjcard.2004.12.063
    20. Bartlett, J. D., Close, G. L., MacLaren, D. P., Gregson, W., Drust, B., & Morton, J. P. (2011). High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. Journal of sports sciences, 29(6), 547-553. doi: 10.1080/02640414.2010.545427
    21. Volek, J. S., Kraemer, W. J., Bush, J. A., Boetes, M., Incledon, T., Clark, K. L., & Lynch, J. M. (1997). Creatine supplementation enhances muscular performance during high-intensity resistance exercise. Journal of the American Dietetic Association, 97(7), 765-770. doi: 10.1016/s0002-8223(97)00189-2
    22. Babraj, J. A., Vollaard, N. B. J., Keast, C., Guppy, F. M., Cottrell, G., & Timmons, J. A. (2009). Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocrine Disorders, 9(1), 3. doi: 10.1186/1472-6823-9-3
    23. Kazemi, A., & Barbat, S. (2019). The Effect of High Intensity Interval Training on Gene Expression of MuRF1 and TRAF6 in Extensor Digitorum Longus (EDL) Muscle of Aged Mice. Journal of Sport Biosciences, 11(2), 225-237. doi: 10.22059/jsb.2019.262132.1297 [Persian]
    24. Esfarjani, F., marandi, M., & Moradi, H. a. (2019). The effect of different training intensities and consequent detraining on levels of sarcolipin and phospholamban in fast-twitch and slow-twitch muscles of male wistar rats. Studies in Medical Sciences, 30(8), 609-620. [Persian]
    25. Thomas, C., Bishop, D., Moore-Morris, T., & Mercier, J. (2007). Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis. American journal of physiology Endocrinology and metabolism, 293(4), E916-922. doi: 10.1152/ajpendo.00164.2007
    26. khorshidvand, m., Ghara khanlou, R., & hassan sajedi, r. (2019). The Effect of Moderate Continuous Training on TRPV1 Protein Expression in Slow-Contraction Muscles of Wistar Rats. Journal of Sport Biosciences, 11(1), 83-96. doi: 10.22059/jsb.2019.269023.1319 [Persian]
    27. Gorzi, A., Rajabi, H., Gharakhanlou, R., & azad, A. (2013). Effects of Endurance Training on A12 Acetyl Cholinesterase Activity in Fast and Slow-Twitch Skeletal Muscles of Male Wistar Rats. Zahedan journal of research in medical sciences, 15(10), e92827. [Persian]
    28. Nishimune, H., Stanford, J. A., & Mori, Y. (2014). Role of exercise in maintaining the integrity of the neuromuscular junction. Muscle & nerve, 49(3), 315-324. doi: 10.1002/mus.24095
    29. Blanco, C. E., Popper, P., & Micevych, P. (1997). α-CGRP mRNA levels in motoneurons innervating specific rat muscles. Molecular Brain Research, 44(2), 253-261. doi: https://doi.org/10.1016/S0169-328X(96)00227-6
    30. Rosenfeld, M. G., Mermod, J. J., Amara, S. G., Swanson, L. W., Sawchenko, P. E., Rivier, J., . . . Evans, R. M. (1983). Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, 304(5922), 129-135. doi: 10.1038/304129a0
    31. Fagerlund, M. J., & Eriksson, L. I. (2009). Current concepts in neuromuscular transmission. British Journal of Anaesthesia, 103(1), 108-114. doi: 10.1093/bja/aep150
    32. Homonko, D. A., & Theriault, E. (1997). Calcitonin gene-related peptide is increased in hindlimb motoneurons after exercise. International journal of sports medicine, 18(7), 503-509. doi: 10.1055/s-2007-972672