The effect of Lactobacillus paracasei probiotic on BDNF gene expression in the striatum of Parkinsonian model rats induced by 6-hydroxydopamine.

Document Type : Research Paper

Authors

1 Master's degree, Animal Biology, Physiology, Faculty of Basic Sciences, Islamic Azad University, Central Tehran Branch.

2 Assistant Professor, Department of biology, Central Tehran branch of Islamic Azad University, Tehran, Iran

3 Assistant Professor, Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran

Abstract

Introduction: Parkinson's disease (PD), a common neurodegenerative disease, is hallmarked by damage to the dopaminergic neurons of the substantia nigra and stiatum. Due to the positive role of brain-drived neutrophic factor (BDNF) in neurodegenerative disease and neuroprotective effects of probiotics, the effect of Lactobacillus paracasei probiotic bacteria on BDNF Gene Expression in the Stratuim of 6-hydroxydopamine Rat Model of Parkinson Disease was investigated in the present stud
Material and method: 30 mature male Wistar rats were divided into 3 groups: Control, Parkinson and Treatment. The rats were gavaged by saline in Control and Parkinson groups and by Lactobacillus paracasei probiotic bacteria in Treatment group for one month. The model of Parkinson’s disease was induced injection of 6-hydroxydopamine in Substantial nigra using a stereotaxic instrument. The amphetamine rotation test was taken. Quantitative Real-time RT-PCR was used to determine the changes occurred in BDNF gene expression.
Results: The results showed that BDNF gene expression increased in treatment group compared to Parkinson group and net rotations has reduced significantly as well.
Conclusion: It seems that pre-treatment of Parkinson’s model of rats with Lactobacillus paracasei probiotic bacteria has increased BDNF, which may caused by neuroprotective effects of probiotics, suggesting a novel therapy for Parkinson’s disease.

Keywords

Main Subjects


  1. De Virgilio, A., Greco, A., Fabbrini, G., Inghilleri, M., Rizzo, M.I., Gallo, A., Conte, M., Rosato, C., Appiani, M.C. and de Vincentiis, M., 2016. Corrigendum to" Parkinson's disease: Autoimmunity and neuroinflammation"[Autoimmun Rev 15 (10)(2016) 1005-1011]. Autoimmunity reviews, 15(12), p.1210.
  2. Ferrazzoli, D., Ortelli, P., Madeo, G., Giladi, N., Petzinger, G.M. and Frazzitta, G., 2018. Basal ganglia and beyond: The interplay between motor and cognitive aspects in Parkinson’s disease rehabilitation. Neuroscience & Biobehavioral Reviews, 90, pp.294-308.
  3. Lu, B., Nagappan, G., Guan, X., Nathan, P.J. and Wren, P., 2013. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nature Reviews Neuroscience, 14(6), pp.401-416.
  4. Westfall, S., Lomis, N., Kahouli, I., Dia, S.Y., Singh, S.P. and Prakash, S., 2017. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cellular and molecular life sciences, 74(20), pp.3769-3787.
  5. Wang, X. and Michaelis, E.K., 2010. Selective neuronal vulnerability to oxidative stress in the brain. Frontiers in aging neuroscience, 2, p.12.
  6. Franceschi, C. and Campisi, J., 2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 69(Suppl_1), pp.S4-S9.
  7. Hu, C.T., Wu, J.R., Cheng, C.C., Wang, S., Wang, H.T., Lee, M.C., Wang, L.J., Pan, S.M., Chang, T.Y. and Wu, W.S., 2011. Reactive oxygen species-mediated PKC and integrin signaling promotes tumor progression of human hepatoma HepG2. Clinical & experimental metastasis, 28(8), pp.851-863.
  8. Trombino, S., Cassano, R., Ferrarelli, T., Barone, E., Picci, N. and Mancuso, C., 2013. Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids and Surfaces B: Biointerfaces, 109, pp.273-279.
  9. Gim, S.A., Sung, J.H., Shah, F.A., Kim, M.O. and Koh, P.O., 2013. Ferulic acid regulates the AKT/GSK-3β/CRMP-2 signaling pathway in a middle cerebral artery occlusion animal model. Laboratory animal research, 29(2), pp.63-69.
  10. Hernandez-Baltazar, D., Zavala-Flores, L.M. and Villanueva-Olivo, A., 2017. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurología (English Edition), 32(8), pp.533-539.
  11. Blesa, J. and Przedborski, S., 2014. Parkinson’s disease: animal models and dopaminergic cell vulnerability. Frontiers in neuroanatomy, 8, p.155.
  12. Zhang, Z.R., Zhang, X.R., Luan, X.Q., Wang, X.S., Wang, W.W., Wang, X.Y., Shao, B. and Xie, C.L., 2019. Striatal overexpression of β-arrestin2 counteracts L-dopa-induced dyskinesia in 6-hydroxydopamine lesioned Parkinson's disease rats. Neurochemistry international, 131, p.104543.
  13. Decressac, M., Mattsson, B. and Björklund, A., 2012. Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson's disease. Experimental neurology, 235(1), pp.306-315.
  14. Wang, Y.Y., Wang, Y., Jiang, H.F., Liu, J.H., Jia, J., Wang, K., Zhao, F., Luo, M.H., Luo, M.M. and Wang, X.M., 2018. Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats. Experimental neurology, 300, pp.135-148.
  15. Stuendl, A., Kunadt, M., Kruse, N., Bartels, C., Moebius, W., Danzer, K.M., Mollenhauer, B. and Schneider, A., 2016. Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain, 139(2), pp.481-494.
  16. Santos, S.F., de Oliveira, H.L., Yamada, E.S., Neves, B.C. and Pereira, A., 2019. The gut and Parkinson’s disease--a bidirectional pathway. Frontiers in Neurology10, p.574.
  17. Ferretta, A., Gaballo, A., Tanzarella, P., Piccoli, C., Capitanio, N., Nico, B., Annese, T., Di Paola, M., Dell'Aquila, C., De Mari, M. and Ferranini, E., 2014. Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(7), pp.902-915.
  18. Ojha, S., Javed, H., Azimullah, S. and Haque, M.E., 2016. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease. Molecular and cellular biochemistry, 418(1-2), pp.59-70.
  19. Baluchnejadmojarad, T., Eftekhari, S.M., Jamali-Raeufy, N., Haghani, S., Zeinali, H. and Roghani, M., 2017. The anti-aging protein klotho alleviates injury of nigrostriatal dopaminergic pathway in 6-hydroxydopamine rat model of Parkinson's disease: Involvement of PKA/CaMKII/CREB signaling. Experimental Gerontology, 100, pp.70-76.
  20. Rahmani, B., Zendehdel, M., Babapour, V., Sadeghinezhad, J. and Alirezaei, M., 2019. Evaluation of Betaine Neuroprotective Effects on 6-Hydroxydopamine-Induced hemi-Parkinsonism in Male Wistar Rats. Iranian Journal of Veterinary Medicine, 13(3), pp.290-302.
  21. Lai, C.L., Lu, C.C., Lin, H.C., Sung, Y.F., Wu, Y.P., Hong, J.S. and Peng, G.S., 2019. Valproate is protective against 6-OHDA-induced dopaminergic neurodegeneration in rodent midbrain: A potential role of BDNF up-regulation. Journal of the Formosan Medical Association, 118(1), pp.420-428.
  22. Fan, Y., Zhao, X., Lu, K. and Cheng, G., 2020. LncRNA BDNF-AS promotes autophagy and apoptosis in MPTP-induced Parkinson’s disease via ablating microRNA-125b-5p. Brain Research Bulletin, 157, pp.119-127.
  23. Carabottia, M., Sciroccoa, A., Masellib, M.A. and Severia, C., 2015. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol, 28(1), pp.1-7.
  24. Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E., Fioramonti, J., Bueno, L. and Theodorou, V., 2012. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11), pp.1885-1895.
  25. Liang, S., Wang, T., Hu, X., Luo, J., Li, W., Wu, X., Duan, Y. and Jin, F., 2015. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience, 310, pp.561-577.