T-helper cells and their cytokines in the pathogenesis and treatment of asthma

Document Type : Review article

Authors

1 Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Abstract
Over the past several decades, considerable progress has been made in understanding chronic inflammation and airway remodeling in asthma. Asthma is a chronic inflammatory disease of the airways that causes reversible obstruction of the airways. Asthma symptoms include reversible obstruction of the airways that clear on their own or remit with treatment. "Th2-high" asthma is dominated by eosinophils, sensitive to glucocorticoids, and caused by glucocorticoids. T-helper-2(Th2) immune responses are derived when airway epithelial cells are stimulated by allergens. A series of cytokines are produced first by 2-innate lymphoid cells (ILC2) and then by Th2 cells. These include Interleukin-4(IL-4), Interleukin-5(IL-5), and Interleukin-13(IL-13). Eosinophil inflammation is promoted by IL-5, and IgE production is promoted by IL-13 and IL-4. "Th2-low" asthma is currently defined only as the absence of Th2 inflammation, which may occur in conjunction with other Th cells. It is thought that Th1 and Th17 produce cytokines that are capable of recruiting neutrophils in "Th2-low" asthma. There are several therapeutic approaches involved in the treatment of asthmatic attacks caused by Th cells, as well as a number of potential directions for future research, listed in this review.

Keywords

Main Subjects


  1. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med (1999) 160:1001–1008. doi: 10.1164/AJRCCM.160.3.9812110.
  2. Lugogo NL, Akuthota P. Type 2 Biomarkers in Asthma: Yet Another Reflection of Heterogeneity. J allergy Clin Immunol Pract (2021) 9:1276–1277. doi: 10.1016/J.JAIP.2020.12.032.
  3. Hudey SN, Ledford DK, Cardet JC. Mechanisms of non-type 2 asthma. Curr Opin Immunol (2020) 66:123–128. 292 doi: 10.1016/J.COI.2020.10.002.
  4. Gregory LG, Lloyd CM.Orchestrating house dust mite-associated allergy in the lung. Trends Immunol (2011) 32:402–411. doi: 10.1016/J.IT.2011.06.006.
  5. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. 296 Definition according to profiles of lymphokine activities and secreted proteins. J Immunol (1986) 136:2348–57.
  6. Muehling LM, Lawrence MG, Woodfolk JA. Pathogenic CD4+ T cells in patients with asthma. J Allergy Clin Immunol (2017) 140:1523–1540. doi: 10.1016/j.jaci.2017.02.025
  7. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol (1995) 155:1151–64. 302
  8. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol (2005) 6:1133–1141. doi: 10.1038/NI1261
  9. Ghoreschi K, Laurence A, Xiang-Ping Y, M Tato C,J McGeachy M, et al. Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling. Nature (2010) 467:967–971. doi: 10.1038/NATURE09447
  10. Patel DD, Kuchroo VK. Th17 Cell Pathway in Human Immunity: Lessons from Genetics and Therapeutic Interventions. Immunity (2015) 43:1040–1051. doi: 10.1016/J.IMMUNI.2015.12.003
  11. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. 310 Nat Immunol (2008) 9:1347–1355. doi: 10.1038/NI.1677
  12. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol (2009) 10:864–871. doi: 10.1038/NI.1770
  13. Hammad H, Lambrecht BN. Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity (2015) 43:29–40. doi: 10.1016/J.IMMUNI.2015.07.007
  14. Ogasawara N, Klingler AI, Tan BK, Poposki JA, Hulse KE, Stevens WW, Peters AT, Grammer LC, Welch KC, 317 Smith SS, et al. Epithelial activators of type 2 inflammation: Elevation of thymic stromal lymphopoietin, but not IL-25 or IL-33, in chronic rhinosinusitis with nasal polyps in Chicago, Illinois. Allergy (2018) 73:2251–2254. doi:10.1111/ALL.13552
  15. Tamachi T, Maezawa Y, Ikeda K, Kagami S ichiro, Hatano M, Seto Y, Suto A, Suzuki K, Watanabe N, Saito Y, 321 et al. IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. J Allergy Clin Immunol (2006) 118:606–614. doi: 10.1016/J.JACI.2006.04.051
  16. Morita H, Arae K, Unno H, Toyama S, Motomura K, Matsuda A, Suto H, Okumura K, Sudo K, Takahashi T, et IL-25 and IL-33 Contribute to Development of Eosinophilic Airway Inflammation in Epicutaneously Antigen- 325 Sensitized Mice. PLoS One (2015) 10: doi: 10.1371/JOURNAL.PONE.0134226
  17. Oboki K, Ohno T, Kajiwara N, Arae K, Morita H, Ishii A, Nambu A, Abe T, Kiyonari H, Matsumoto K, et al. IL- 327 33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci U S A (2010) 107:18581– 328 18586. doi: 10.1073/PNAS.1003059107
  18. Pandey A, Ozaki K, Baumann H, Levin SD, Puel A, Farr AG, Ziegler SF, Leonard WJ, Lodish HF. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol (2000) 1:59–64. doi:10.1038/76923
  19. Lai JF, Thompson LJ, Ziegler SF. TSLP drives acute T H 2-cell differentiation in lungs. J Allergy Clin Immunol (2020) 146:1406-1418.e7. doi: 10.1016/J.JACI.2020.03.032
  20. Shikotra A, Choy DF, Ohri CM, Doran E, Butler C, Hargadon B, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol (2012) 129: doi:10.1016/J.JACI.2011.08.031
  21. Ying S, O'Connor B, Ratoff J, Meng Q, Fang C, Cousins D, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. 339 J Immunol (2008) 181:2790–2798. doi: 10.4049/JIMMUNOL.181.4.2790
  22. Kabata H, Moro K, Fukunaga K, Suzuki Y, Miyata J, Masaki K, Betsuyaku T, Koyasu S, Asano K. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat Commun (2013) 4:1–7. doi: 10.1038/ncomms3675
  23. Liu S, Verma M, Michalec L, Liu W, Sripada A, Rollins D, Good J, Ito Y, Chu HW, Gorska MM, et al. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin. J Allergy Clin Immunol (2018) 141:257-268.e6. doi: 10.1016/j.jaci.2017.03.032
  24. Gauvreau GM, O’Byrne PM, Boulet L-P, Wang Y, Cockcroft D, Bigler J, FitzGerald JM, Boedigheimer M, 347 Davis BE, Dias C, et al. Effects of an Anti-TSLP Antibody on Allergen-Induced Asthmatic Responses. N Engl J Med (2014) 370:2102–2110. doi: 10.1056/NEJMOA1402895
  25. Nakajima S, Kabata H, Kabashima K, Asano K. Anti-TSLP antibodies: Targeting a master regulator of type 2 immune responses. Allergol Int (2020) 69:197–203. doi: 10.1016/J.ALIT.2020.01.001
  26. Matera MG, Rogliani P, Calzetta L, Cazzola M. TSLP Inhibitors for Asthma: Current Status and Future Prospects. 352 Drugs (2020) 80:449–458. doi: 10.1007/S40265-020-01273-4
  27. Toki S, Goleniewska K, Zhang J, Zhou W, Newcomb DC, Zhou B, Kita H, Boyd KL, Peebles RS. TSLP and IL- 354 33 reciprocally promote each other’s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy (2020) 75:1606–1617. doi: 10.1111/ALL.14196
  28. Morita H, Moro K, Koyasu S. Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol (2016) 138:1253–1264. doi: 10.1016/J.JACI.2016.09.011
  29. Halim TYF, Steer CA, Mathä L, Gold MJ, Martinez-Gonzalez I, McNagny KM, McKenzie ANJ, Takei F. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity (2014) 40:425–435. doi: 10.1016/J.IMMUNI.2014.01.011
  30. Akdis CA, Arkwright PD, Brüggen MC, Busse W, Gadina M, Guttman-Yassky E, Kabashima K, Mitamura Y, 362 Vian L, Wu J, et al. Type 2 immunity in the skin and lungs. Allergy Eur J Allergy Clin Immunol (2020) 75:1582– 363 1605. doi: 10.1111/all.14318
  31. Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol (2006) 24:147–174. doi: 10.1146/ANNUREV.IMMUNOL.24.021605.090720
  32. Malm-Erjefält M, Greiff L, Ankerst J, Andersson M, Wallengren J, Cardell LO, Rak S, Persson CGA, Erjefält JS. 367 Circulating eosinophils in asthma, allergic rhinitis, and atopic dermatitis lack morphological signs of degranulation. Clin Exp Allergy (2005) 35:1334–1340. doi: 10.1111/J.1365-2222.2005.02335.X
  33. Neves JS, Perez SAC, Spencer LA, Melo RCN, Reynolds L, Ghiran I, Mahmudi-Azer S, Odemuyiwa SO, 370 Dvorak AM, Moqbel R, et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc Natl Acad Sci U S A (2008) 105:18478–18483. doi: 10.1073/PNAS.0804547105
  34. Amin K, Janson C, Bystrom J. Role of Eosinophil Granulocytes in Allergic Airway Inflammation Endotypes. 373 Scand J Immunol (2016) 84:75–85. doi: 10.1111/SJI.12448
  35. Ueki S, Mahemuti G, Oyamada H, Kato H, Kihara J, Tanabe M, Ito W, Chiba T, Takeda M, Kayaba H, et al. 375 Retinoic acids are potent inhibitors of spontaneous human eosinophil apoptosis. J Immunol (2008) 181:7689– 376 7698. doi: 10.4049/JIMMUNOL.181.11.7689
  36. Adachi T, Alam R. The mechanism of IL-5 signal transduction. Am J Physiol (1998) 275: doi: 10.1152/AJPCELL.1998.275.3.C623
  37. Ueki S, Melo RCN, Ghiran I, Spencer LA, Dvorak AM, Weller PF. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood (2013) 121:2074–2083. 381 doi: 10.1182/BLOOD-2012-05-432088.
  38. Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol Rev (2004) 202:175–190. doi: 10.1111/j.0105- 383 2896.2004.00215.x
  39. Xiong H, Dolpady J, Wabl M, de Lafaille MAC, Lafaille JJ. Sequential class switching is required for the generation of high affinity IgE antibodies. J Exp Med (2012) 209:353–364. doi: 10.1084/jem.20111941
  40. Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: A multi-functional master cell. Front Immunol (2016) 6:1–12. doi: 10.3389/fimmu.2015.00620
  41. Castillo JR, Peters SP, Busse WW. Asthma Exacerbations: Pathogenesis, Prevention, and Treatment. J Allergy Clin Immunol Pract (2017) 5:918–927. doi: 10.1016/j.jaip.2017.05.001
  42. Gour N, Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine (2015) 75:68–78. doi: 10.1016/j.cyto.2015.05.014
  43. Manson ML, Säfholm J, James A, Johnsson AK, Bergman P, Al-Ameri M, Orre AC, Kärrman-Mårdh C, Dahlén SE, Adner M. IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J Allergy Clin Immunol (2020) 145:808-817.e2. doi: 10.1016/J.JACI.2019.10.037
  44. Nagase H, Ueki S, Fujieda S. The roles of IL-5 and anti-IL-5 treatment in eosinophilic diseases: Asthma, 396 eosinophilic granulomatosis with polyangiitis, and eosinophilic chronic rhinosinusitis. Allergol Int (2020) 69:178–186. doi: 10.1016/J.ALIT.2020.02.002
  45. Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM, Chetta A, Humbert M, Katz LE, Keene ON, 399 Yancey SW, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med (2014) 371:1198–1207. doi: 10.1056/NEJMOA1403290
  46. Eger K, Kroes JA, ten Brinke A, Bel EH. Long-Term Therapy Response to Anti-IL-5 Biologics in Severe Asthma-A Real-Life Evaluation. J allergy Clin Immunol Pract (2021) 9:1194–1200. doi: 10.1016/J.JAIP.2020.10.010
  47. Busse WW, Brusselle GG, Korn S, Kuna P, Magnan A, Cohen D, Bowen K, Piechowiak T, Wang MM, Colice G. 405 Tralokinumab did not demonstrate oral corticosteroid-sparing effects in severe asthma. Eur Respir J (2019) 53: doi: 10.1183/13993003.00948-2018
  48. Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, Busse WW, Ford L, Sher L, FitzGerald JM, et al. 408 Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N Engl J Med (2018) 378:2486– 409 2496. doi: 10.1056/NEJMOA1804092
  49. Bourdin A, Papi AA, Corren J, Virchow JC, Rice MS, Deniz Y, Djandji M, Rowe P, Pavord ID. Dupilumab is effective in type 2-high asthma patients receiving high-dose inhaled corticosteroids at baseline. Allergy (2021) 76:269–280. doi: 10.1111/ALL.14611
  50. Conde E, Bertrand R, Balbino B, Bonnefoy J, Stackowicz J, Caillot N, Colaone F, Hamdi S, Houmadi R, Loste A, 414 et al. Dual vaccination against IL-4 and IL-13 protects against chronic allergic asthma in mice. Nat Commun (2021) 12: doi: 10.1038/S41467-021-22834-5
  51. Okayama Y, Matsumoto H, Odajima H, Takahagi S, Hide M, Okubo K. Roles of omalizumab in various allergic diseases. Allergol Int (2020) 69:167–177. doi: 10.1016/J.ALIT.2020.01.004
  52. Rigas D, Lewis G, Aron JL, Wang B, Banie H, Sankaranarayanan I, Galle-Treger L, Maazi H, Lo R, Freeman GJ, 419 et al. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction. J Allergy Clin Immunol (2017) 139:1468-1477.e2. doi: 10.1016/J.JACI.2016.08.034
  53. Krishnamoorthy N, Burkett PR, Dalli J, Abdulnour R-EE, Colas R, Ramon S, Phipps RP, Petasis NA, Kuchroo VK, Serhan CN, et al. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J Immunol (2015) 194:863–867. doi: 10.4049/JIMMUNOL.1402534
  54. Kobayashi T, Iijima K, Dent AL, Kita H. Follicular helper T cells mediate IgE antibody response to airborne allergens. J Allergy Clin Immunol (2017) 139:300-313.e7. doi: 10.1016/J.JACI.2016.04.021
  55. Varricchi G, Harker J, Borriello F, Marone G, Durham SR, Shamji MH. T follicular helper (Tfh ) cells in normal immune responses and in allergic disorders. Allergy (2016) 71:1086–1094. doi: 10.1111/ALL.12878
  56. Zhang W, Lin C, Sampath V, Nadeau K. Impact of allergen immunotherapy in allergic asthma. Immunotherapy (2018) 10:579–593. doi: 10.2217/imt-2017-0138
  57. Yao Y, Chen CL, Yu D, Liu Z. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy. Allergy Eur J Allergy Clin Immunol (2021) 76:456–470. doi: 10.1111/all.14639
  58. Valenta R, Campana R, Niederberger V. Recombinant allergy vaccines based on allergen-derived B cell epitopes. 435 Immunol Lett (2017) 189:19–26. doi: 10.1016/J.IMLET.2017.04.015
  59. Schütze N, Trojandt S, Kuhn S, Tomm JM, von Bergen M, Simon JC, Polte T. Allergen-Induced IL-6 Regulates IL-9/IL-17A Balance in CD4+ T Cells in Allergic Airway Inflammation. J Immunol (2016) 197:2653–2664. doi: 10.4049/JIMMUNOL.1501599
  60. Sehra S, Yao W, Nguyen ET, Glosson-Byers NL, Akhtar N, Zhou B, Kaplan MH. TH9 cells are required for tissue mast cell accumulation during allergic inflammation. J Allergy Clin Immunol (2015) 136:433-440.e1. doi: 10.1016/J.JACI.2015.01.021
  61. Buttrick TS, Wang W, Yung C, Trieu KG, Patel K, Khoury SJ, Ai X, Elyaman W. Foxo1 Promotes Th9 Cell Differentiation and Airway Allergy. Sci Rep (2018) 8:1–10. doi: 10.1038/s41598-018-19315-z
  62. Watanabe A, Mishima H, Renzi PM, Xu LJ, Hamid Q, Martin JG. Transfer of allergic airway responses with antigen-primed CD4+ but not CD8+ T cells in brown Norway rats. J Clin Invest (1995) 96:1303–1310. doi: 10.1172/JCI118165
  63. Raundhal M, Morse C, Khare A, Oriss TB, Milosevic J, Trudeau J, Huff R, Pilewski J, Holguin F, Kolls J, et al. 448 High IFN-γ and low SLPI mark severe asthma in mice and humans. J Clin Invest (2015) 125:3037–3050. doi: 10.1172/JCI80911
  64. Yu M, Eckart MR, Morgan AA, Mukai K, Butte AJ, Tsai M, Galli SJ. Identification of an IFN-γ/mast cell axis in a mouse model of chronic asthma. J Clin Invest (2011) 121:3133–3143. doi: 10.1172/JCI43598
  65. Kikkawa Y, Sugiyama K, Obara K, Hirata H, Fukushima Y, Toda M, Fukuda T. Interferon-alpha inhibits airway eosinophilia and hyperresponsiveness in an animal asthma model [corrected]. Asia Pac Allergy (2012) 2:256. doi: 10.5415/APALLERGY.2012.2.4.256
  66. Hellings PW, Kasran A, Liu Z, Vandekerckhove P, Wuyts A, Overbergh L, Mathieu C, Ceuppens JL. Interleukin- 456 17 orchestrates the granulocyte influx into airways after allergen inhalation in a mouse model of allergic asthma. 457 Am J Respir Cell Mol Biol (2003) 28:42–50. doi: 10.1165/RCMB.4832
  67. Ricciardolo FLM, Sorbello V, Folino A, Gallo F, Massaglia GM, Favatà G, Conticello S, Vallese D, Gani F, 459 Malerba M, et al. Identification of IL-17F/frequent exacerbator endotype in asthma. J Allergy Clin Immunol (2017) 140:395–406. doi: 10.1016/J.JACI.2016.10.034
  68. Dragon S, Rahman MS, Yang J, Unruh H, Halayko AJ, Gounni AS. IL-17 enhances IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol (2007) 292: doi: 10.1152/AJPLUNG.00306.2006
  69. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol (2013) 13:159–175. doi: 10.1038/NRI3399
  70. Lachowicz-Scroggins ME, Dunican EM, Charbit AR, Raymond W, Looney MR, Peters MC, Gordon ED, 467 Woodruff PG, Lefrançais E, Phillips BR, et al. Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. Am J Respir Crit Care Med (2019) 199:1076–1085. doi: 10.1164/RCCM.201810-1869OC
  71. Panettieri RA. The Role of Neutrophils in Asthma. Immunol Allergy Clin North Am (2018) 38:629–638. doi: 10.1016/J.IAC.2018.06.005
  72. Ray A, Kolls JK. Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol (2017) 38:942–954. doi: 10.1016/j.it.2017.07.003
  73. Snelgrove RJ, Patel DF, Patel T, Lloyd CM. The enigmatic role of the neutrophil in asthma: Friend, foe or indifferent? Clin Exp Allergy (2018) 48:1275–1285. doi: 10.1111/CEA.13191
  74. Wang Q, Li H, Yao Y, Xia D, Zhou J. The Overexpression of Heparin-Binding Epidermal Growth Factor Is Responsible for Th17-Induced Airway Remodeling in an Experimental Asthma Model. J Immunol (2010) 185:834–841. doi: 10.4049/jimmunol.0901490
  75. Lu S, Li H, Gao R, Gao X, Xu F, Wang Q, Lu G, Xia D, Zhou J. IL-17A, But Not IL-17F, Is Indispensable for Airway Vascular Remodeling Induced by Exaggerated Th17 Cell Responses in Prolonged Ovalbumin-Challenged Mice. J Immunol (2015) 194:3557–3566. doi: 10.4049/jimmunol.1400829
  76. Al-Ramli W, Préfontaine D, Chouiali F, Martin JG, Olivenstein R, Lemière C, Hamid Q. T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J Allergy Clin Immunol (2009) 123:1185–1187. doi: 10.1016/J.JACI.2009.02.024
  77. Esty B, Harb H, Bartnikas LM, Charbonnier LM, Massoud AH, Leon-Astudillo C, Visner G, Subramaniam M, 486 Phipatanakul W, Chatila TA. Treatment of severe persistent asthma with IL-6 receptor blockade. J allergy Clin Immunol Pract (2019) 7:1639-1642.e4. doi: 10.1016/J.JAIP.2019.02.043
  78. Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, Lin S-L. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med (2013) 188:1294–1302. doi: 10.1164/RCCM.201212-2318OC
  79. Kwah JH, Peters AT. Asthma in adults: Principles of treatment. Allergy asthma Proc (2019) 40:396–402. doi: 10.2500/AAP.2019.40.4256
  80. Slovick A, Douiri A, Muir R, Guerra A, Tsioulos K, Hay E, Lam EPS, Kelly J, Peacock JL, Ying S, et al. Intradermal grass pollen immunotherapy increases T H 2 and IgE responses and worsens respiratory allergic symptoms. J Allergy Clin Immunol (2017) 139:1830-1839.e13. doi: 10.1016/J.JACI.2016.09.024
  81. Romeo MJ, Agrawal R, Pomés A, Woodfolk JA. A molecular perspective on TH2-promoting cytokine receptors in patients with allergic disease. J Allergy Clin Immunol (2014) 133: doi: 10.1016/J.JACI.2013.08.006
  82. Homburg U, Renz H, Timmer W, Hohlfeld JM, Seitz F, Lüer K, Mayer A, Wacker A, Schmidt O, Kuhlmann J, et al. Safety and tolerability of a novel inhaled GATA3 mRNA targeting DNAzyme in patients with TH2-driven asthma. J Allergy Clin Immunol (2015) 136:797–800. doi: 10.1016/J.JACI.2015.02.018
  83. Krug N, Hohlfeld JM, Kirsten A-M, Kornmann O, Beeh KM, Kappeler D, Korn S, Ignatenko S, Timmer W, 502 Rogon C, et al. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N Engl J Med (2015) 372:1987–1995. doi: 10.1056/NEJMOA1411776