اثرات درمانی احتمالی ترکیبات فیتوشیمیایی مشتق شده ازگیاهان دارویی برکرونا ویروس، یک مقاله مروری

نوع مقاله : مقاله مروری

نویسندگان

1 کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی بیرجند ، بیرجند، ایران

2 گروه داروسازی بالینی، دانشکده داروسازی، دانشگاه علوم پزشکی بیرجند، بیرجند، ایران

3 مرکز تحقیقات بیماری های قلب و عروق ، دانشگاه علوم پزشکی بیرجند، بیرجند، ایران

چکیده

بیماری کرونا ویروس 2019 یا سندرم حاد تنفسی کرونا ویروس 2 (SARS-CoV-2) یک بیماری ویروسی جدید می‌باشد که در پایان سال 2019 شناسایی شد. در چندین مطالعه‌ی اخیر، استفاده ازگیاهان و ترکیبات فیتوشیمیایی مشتق شده از آن‌ها به منظور تقویت سیستم ایمنی گزارش شده است. مطالعه‌ی کنونی به بررسی خواص درمانی احتمالی ترکیبات فیتوشیمیایی بر ویروس SARS-CoV-2 پرداخته است.
کلمات کلیدی؛ شامل کووید-19، سارس-کووید2، فیتوشیمیایی یا فلاونوئید یا ترکیب طبیعی در قسمت عنوان یا چکیده مقاله هستند که تا تاریخ فوریه 2021 در پایگاه‌های اطلاعاتی علمی، پایگاه علمی ISI، پاب مد، اسکوپوس و گوگل اسکالرجستجو شدند.
ترکیبات فیتوشیمیایی؛ شامل تیموکینون، کامفرول، هسپریدین و کوئرستین هستند که خواص ضد ویروسی از جمله مهار پروتئین کیناز B و فسفوریلاسیون پروتئین کیناز و همچنین اثرات مسدودکننده بر روی یک کانال انتخابی بیان شده در سلول آلوده به SARS-CoV-2 (کانال a3) را نشان دادند. مواد فیتوشیمیایی همچنین سطح سیتوکین‌های پیش التهابی از جمله TNF-α، IL-6، IL-6، IL-1α، IL-1β و کموکاین‌ها را کاهش دادند.
مواد فیتوشیمیایی به دلیل اثرات ضد ویروسی، ضد التهابی و تعدیل کننده سیستم ایمنی ممکن است، اثرات مفیدی در کنترل یا درمان بیماری های عفونی مانند SARS-CoV-2 داشته باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Possible therapeutic effects of phytochemicals derived from medicinal plants on coronavirus, a review

نویسندگان [English]

  • Melika Shoghi 1
  • Shima Jafari 2
  • Mohammad Reza Khazdair 3
1 Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
2 Department of clinical pharmacy, School of pharmacy, Birjand University of Medical Sciences, Birjand, Iran
3 Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
چکیده [English]

The coronavirus disease 2019 or severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel coronavirus identified at the end of 2019. The use of plants and derivate phytochemicals compounds for immune enhancement has been reported by several recent studies. The present study reviewed the possible therapeutic properties of phytochemicals on SARS-CoV-2.
The key words including; “COVID-19”, “SARS-CoV-2”, “Phytochemicals” or “flavonoid” or “natural product” in the Title/Abstract were searched in scientific databases, Web of Science (ISI), PubMed, Scopus, and Google Scholar.
Phytochemicals including; thymoquinone (TQ), Kaempferol (KA), Hesperidin (Hes) and Quercetin (QU) showed antiviral properties including, inhibition of protein kinase B and phosphorylation of protein kinase as well as blocking effects on a selective channel expressed in the infected cell of SARS-CoV (3a channel). The phytochemicals also reduced the level pro-inflammatory cytokines including; TNF-α, IL-6, IL-10, IL-1 α, IL-1 β, and chemokines.
Phytochemicals might be beneficial effects in the control or treatment of infectious disease such as SARS-CoV-2 due to antiviral, anti-inflammatory, and immunomodulatory effects.

کلیدواژه‌ها [English]

  • Coronavirus
  • Phytochemicals
  • Anti-inflammatory effects
  • Antiviral effects
  1. Malik YS, Sircar S, Bhat S, Sharun K, Dhama K, Dadar M, et al. Emerging novel coronavirus (2019-nCoV)—current scenario, evolutionary perspective based on genome analysis and recent developments. Veterinary Quarterly. 2020;40(1):68-76.
  2. Shanmugaraj B, Malla A, Phoolcharoen W. Emergence of Novel Coronavirus 2019-nCoV: Need for rapid vaccine and biologics development. Pathogens. 2020;9(2):148.
  3. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. Journal of travel medicine. 2020.
  4. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine. 2020;8(4):420-2.
  5. Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP, Kelvin DJ. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus research. 2008;133(1):13-9.
  6. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497-506.
  7. Lancet T. Redefining vulnerability in the era of COVID-19. Lancet (London, England). 2020;395(10230):1089.
  8. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA cardiology. 2020.
  9. Fan Y-Y, Huang Z-T, Li L, Wu M-H, Yu T, Koup RA, et al. Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection. Archives of virology. 2009;154(7):1093-9.
  10. Monteleone G, Ardizzone S. Are patients with inflammatory bowel disease at increased risk for Covid-19 infection? Journal of Crohn's and Colitis. 2020.
  11. Tapas AR, Sakarkar D, Kakde R. Flavonoids as nutraceuticals: a review. Tropical journal of Pharmaceutical research. 2008;7(3):1089-99.
  12. Khazdair M, Alavinezhad A, Boskabady M. Carvacrol ameliorates haematological parameters, oxidant/antioxidant biomarkers and pulmonary function tests in patients with sulphur mustard‐induced lung disorders: A randomized double‐blind clinical trial. Journal of clinical pharmacy and therapeutics. 2018;43(5):664-74.
  13. Lin C-W, Tsai F-J, Tsai C-H, Lai C-C, Wan L, Ho T-Y, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral research. 2005;68(1):36-42.
  14. Okamoto I, Iwaki K, Koya-Miyata S, Tanimoto T, Kohno K, Ikeda M, et al. The flavonoid Kaempferol suppresses the graft-versus-host reaction by inhibiting type 1 cytokine production and CD8+ T cell engraftment. Clinical Immunology. 2002;103(2):132-44.
  15. Kianmehr M, Khazdair MR. Possible therapeutic effects of Crocus sativus stigma and its petal flavonoid, kaempferol, on respiratory disorders. Pharmaceutical Biology. 2020;58(1):1140-9.
  16. Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, et al. Anticancer and apoptosis‑inducing effects of quercetin in vitro and in vivo. Oncology reports. 2017;38(2):819-28.
  17. Khazdair MR, Anaeigoudari A, Kianmehr M. Anti-Asthmatic Effects of Portulaca Oleracea and its Constituents, a Review. Journal of pharmacopuncture. 2019;22(3):122.
  18. Khazdair MR. The Protective Effects of Nigella sativa and Its Constituents on Induced Neurotoxicity. Journal of toxicology. 2015;2015.
  19. Khazdair MR, Gholamnezhad Z, Rezaee R, Boskabady MH. A qualitative and quantitative comparison of Crocus sativus and Nigella sativa immunomodulatory effects. Biomedicine & Pharmacotherapy. 2021;140:111774.
  20. Wilmsen PK, Spada DS, Salvador M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. Journal of agricultural and food chemistry. 2005;53(12):4757-61.
  21. Jeong HJ, Ryu YB, Park S-J, Kim JH, Kwon H-J, Kim JH, et al. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorganic & medicinal chemistry. 2009;17(19):6816-23.
  22. Li J, Huang H, Feng M, Zhou W, Shi X, Zhou P. In vitro and in vivo anti-hepatitis B virus activities of a plant extract from Geranium carolinianum L. Antiviral Research. 2008;79(2):114-20.
  23. Zhang T, Wu Z, Du J, Hu Y, Liu L, Yang F, et al. Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics. PLoS One. 2012;7(1):e30259.
  24. Tsai F-J, Lin C-W, Lai C-C, Lan Y-C, Lai C-H, Hung C-H, et al. Kaempferol inhibits enterovirus 71 replication and internal ribosome entry site (IRES) activity through FUBP and HNRP proteins. Food chemistry. 2011;128(2):312-22.
  25. Zhang R, Ai X, Duan Y, Xue M, He W, Wang C, et al. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways. Biomedicine & pharmacotherapy. 2017;89:660-72.
  26. Zhu L, Wang P, Yuan W, Zhu G. Kaempferol inhibited bovine herpesvirus 1 replication and LPS-induced inflammatory response. Acta virologica. 2018;62(2):220-5.
  27. Behbahani M, Sayedipour S, Pourazar A, Shanehsazzadeh M. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca. Research in pharmaceutical sciences. 2014;9(6):463.
  28. Schwarz S, Sauter D, Wang K, Zhang R, Sun B, Karioti A, et al. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta medica. 2014;80(02-03):177.
  29. Castrillo J, Berghe DV, Carrasco L. 3-Methylquercetin is a potent and selective inhibitor of poliovirus RNA synthesis. Virology. 1986;152(1):219-27.
  30. Ganesan S, Faris AN, Comstock AT, Wang Q, Nanua S, Hershenson MB, et al. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral research. 2012;94(3):258-71.
  31. Ghosh A, Desai A, Ravi V, Narayanappa G, Tyagi BK. Chikungunya virus interacts with heat shock cognate 70 protein to facilitate its entry into mosquito cell line. Intervirology. 2017;60:247-62.
  32. Rojas Á, Del Campo JA, Clement S, Lemasson M, García-Valdecasas M, Gil-Gómez A, et al. Effect of quercetin on hepatitis C virus life cycle: from viral to host targets. Scientific reports. 2016;6(1):1-9.
  33. Chiow K, Phoon M, Putti T, Tan BK, Chow VT. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pacific journal of tropical medicine. 2016;9(1):1-7.
  34. Sun X, Zhang Y, Liu Y, Wang G. Study on mechanism of Reduning Injection in treating novel coronavirus pneumonia based on network pharmacology. Journal of Chinese Medicinal Materials. 2020:1-9.
  35. Vijayakumar BG, Ramesh D, Joji A, Kannan T. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. European Journal of Pharmacology. 2020:173448.
  36. Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S, Reyburn HT, et al. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. International Journal of Biological Macromolecules. 2020.
  37. Glinsky GV. Tripartite Combination of Candidate Pandemic Mitigation Agents: Vitamin D, Quercetin, and Estradiol Manifest Properties of Medicinal Agents for Targeted Mitigation of the COVID-19 Pandemic Defined by Genomics-Guided Tracing of SARS-CoV-2 Targets in Human Cells. Biomedicines. 2020;8(5):129.
  38. Williamson G, Kerimi A. Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) Viral Spike Protein-Angiotensin Converting Enzyme-2 (ACE2) interaction. Biochemical Pharmacology. 2020:114123.
  39. Yarmolinsky L, Huleihel M, Zaccai M, Ben-Shabat S. Potent antiviral flavone glycosides from Ficus benjamina leaves. Fitoterapia. 2012;83(2):362-7.
  40. Wang L. Study on the network pharmacology and preliminary evidence of Lianhua Qingwen in the treatment of novel coronavirus (2019-nCoV). Journal of Chinese Medicinal Materials. 2020;3:772-8.
  41. Huang Y-F, Bai C, He F, Xie Y, Zhou H. Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019 (COVID-19). Pharmacological Research. 2020.
  42. Kong Y, Wu H, Chen Y, Lai S, Yang Z, Chen J. Mechanism of Tanreqing Injection on treatment of coronavirus disease 2019 based on network pharmacology and molecular docking. Chinese Traditional and Herbal Drugs. 2020;51:1785-94.
  43. Jimilihan S. Study on the active components in the adjuvant treatment of novel coronavirus pneumonia (COVID-19) with Jinhua Qinggan Granules based on network pharmacology and molecular docking. Journal of Chinese Medicinal Materials. 2020:1-10.
  44. Elfiky AA. Natural products may interfere with SARS-CoV-2 attachment to the host cell. Journal of Biomolecular Structure and Dynamics. 2020(just-accepted):1-16.
  45. Ahmad S, Abbasi HW, Shahid S, Gul S, Abbasi SW. Molecular Docking, Simulation and MM-PBSA Studies of Nigella Sativa Compounds: A Computational Quest to identify Potential Natural Antiviral for COVID-19 Treatment. Journal of Biomolecular Structure and Dynamics. 2020(just-accepted):1-16.
  46. Jakhmola Mani R, Sehgal N, Dogra N, Saxena S, Pande Katare D. Deciphering underlying mechanism of Sars-CoV-2 infection in humans and revealing the therapeutic potential of bioactive constituents from Nigella sativa to combat COVID19: in-silico study. Journal of Biomolecular Structure and Dynamics. 2020:1-13.
  47. Mohideen AKS. Molecular docking analysis of phytochemical thymoquinone as a therapeutic agent on SARS-Cov-2 envelope protein. Biointerface Res Appl Chem.2021(11):8389-401.
  48. Khazdair MR, Ghafari S, Sadeghi M. Possible therapeutic effects of Nigella sativa and its thymoquinone on COVID-19. Pharmaceutical Biology. 2021;59(1):696-703.
  49. Dong W, Wei X, Zhang F, Hao J, Huang F, Zhang C, et al. A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways. Scientific reports. 2014;4:7237.
  50. Saha RK, Takahashi T, Suzuki T. Glucosyl hesperidin prevents influenza a virus replication in vitro by inhibition of viral sialidase. Biological and Pharmaceutical Bulletin. 2009;32(7):1188-92.
  51. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B. 2020.
  52. Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA‐dependent RNA polymerase (RdRp) inhibition: An in-silico analysis. Journal of Biomolecular Structure and Dynamics. 2020:1-16.
  53. Lin F, Luo X, Tsun A, Li Z, Li D, Li B. Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation. International immunopharmacology. 2015;28(2):859-65.
  54. Lin C-W, Chen P-N, Chen M-K, Yang W-E, Tang C-H, Yang S-F, et al. Kaempferol reduces matrix metalloproteinase-2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells. PLoS One. 2013;8(11):e80883.
  55. Kim M, Lim SJ, Kang SW, Um B-H, Nho CW. Aceriphyllum rossii extract and its active compounds, quercetin and kaempferol inhibit IgE-mediated mast cell activation and passive cutaneous anaphylaxis. Journal of agricultural and food chemistry. 2014;62(17):3750-8.
  56. Kong L, Luo C, Li X, Zhou Y, He H. The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits. Lipids in health and disease. 2013;12(1):1.
  57. Medeiros K, Faustino L, Borduchi E, Nascimento R, Silva T, Gomes E, et al. Preventive and curative glycoside kaempferol treatments attenuate the TH2-driven allergic airway disease. International immunopharmacology. 2009;9(13):1540-8.
  58. Park MJ, Lee EK, Heo H-S, Kim M-S, Sung B, Kim MK, et al. The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-κ B via nuclear factor-inducing kinase/I κ B kinase and mitogen-activated protein kinase pathways. Journal of medicinal food. 2009;12(2):351-8.
  59. Nair MP, Kandaswami C, Mahajan S, Chadha KC, Chawda R, Nair H, et al. The flavonoid, quercetin, differentially regulates Th-1 (IFNγ) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2002;1593(1):29-36.
  60. Huang R-Y, Yu Y-L, Cheng W-C, OuYang C-N, Fu E, Chu C-L. Immunosuppressive effect of quercetin on dendritic cell activation and function. The Journal of Immunology. 2010;184(12):6815-21.
  61. Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J, Gálvez J, et al. In vivo quercitrin anti‐inflammatory effect involves release of quercetin, which inhibits inflammation through down‐regulation of the NF‐κB pathway. European journal of immunology. 2005;35(2):584-92.
  62. Park H-j, Lee C-M, Jung ID, Lee JS, Jeong Y-i, Chang JH, et al. Quercetin regulates Th1/Th2 balance in a murine model of asthma. International immunopharmacology. 2009;9(3):261-7.
  63. Abengózar-Vela A, Schaumburg CS, Stern ME, Calonge M, Enríquez-de-Salamanca A, González-García MJ. Topical quercetin and resveratrol protect the ocular surface in experimental dry eye disease. Ocular immunology and inflammation. 2019;27(6):1023-32.
  64. Al-Rekabi MD, Ali SH, Al-Basaisi H, Hashim F, Hussein AH, Abbas HK. Immunomodulatory Effects of Quercetin in Patient with Active Rheumatoid Arthritis. Br J Med Health Res. 2015;2(6):23-34.
  65. El Gazzar M. Thymoquinone suppressses in vitro production of IL-5 and IL-13 by mast cells in response to lipopolysaccharide stimulation. Inflammation Research. 2007;56(8):345-51.
  66. Xuan NT, Shumilina E, Qadri SM, Götz F, Lang F. Effect of thymoquinone on mouse dendritic cells. Cellular Physiology and Biochemistry. 2010;25(2-3):307-14.
  67. Sethi G, Ahn KS, Aggarwal BB. Targeting nuclear factor-κB activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Molecular cancer research. 2008;6(6):1059-70.
  68. Chehl N, Chipitsyna G, Gong Q, Yeo CJ, Arafat HA. Anti‐inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB. 2009;11(5):373-81.
  69. Rana Keyhanmanesh LP, Omrani H, Mirzamohammadi Z, Shahbazfar AA. The effect of single dose of thymoquinone, the main constituents of Nigella sativa, in guinea pig model of asthma. BioImpacts: BI. 2014;4(2):75.
  70. El Gazzar M, El Mezayen R, Nicolls MR, Marecki JC, Dreskin SC. Downregulation of leukotriene biosynthesis by thymoquinone attenuates airway inflammation in a mouse model of allergic asthma. Biochimica et Biophysica Acta (BBA)-General Subjects. 2006;1760(7):1088-95.
  71. El Gazzar M, El Mezayen R, Marecki JC, Nicolls MR, Canastar A, Dreskin SC. Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. International immunopharmacology. 2006;6(7):1135-42.
  72. Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Sadeghnia HR, Khazaei M. The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine. 2017;96:173-84.
  73. Abulfadl Y, El-Maraghy N, Ahmed AE, Nofal S, Abdel-Mottaleb Y, Badary O. Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signaling. Human & experimental toxicology. 2018;37(10):1092-104.
  74. Badr G, Alwasel S, Ebaid H, Mohany M, Alhazza I. Perinatal supplementation with thymoquinone improves diabetic complications and T cell immune responses in rat offspring. Cellular immunology. 2011;267(2):133-40.
  75. Fu Z, Chen Z, Xie Q, Lei H, Xiang S. Hesperidin protects against IL‑1β‑induced inflammation in human osteoarthritis chondrocytes. Experimental and therapeutic medicine. 2018;16(4):3721-7.
  76. Tsai Y-F, Chen Y-R, Chen J-P, Tang Y, Yang K-C. Effect of hesperidin on anti-inflammation and cellular antioxidant capacity in hydrogen peroxide-stimulated human articular chondrocytes. Process Biochemistry. 2019;85:175-84.
  77. Abuelsaad AS, Allam G, Al-Solumani AA. Hesperidin inhibits inflammatory response induced by Aeromonas hydrophila infection and alters CD4+/CD8+ T cell ratio. Mediators of inflammation. 2014;2014.
  78. Tamilselvam K, Nataraj J, Janakiraman U, Manivasagam T, Essa MM. Antioxidant and anti-inflammatory potential of hesperidin against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced experimental Parkinson's disease in mice. International journal of nutrition, pharmacology, neurological diseases. 2013;3(3):294.
  79. Kobayashi J, Murata I. Nitric oxide inhalation as an interventional rescue therapy for COVID-19-induced acute respiratory distress syndrome. Annals of Intensive Care. 2020;10(1):1-2.
  80. Hedenstierna G, Chen L, Hedenstierna M, Lieberman R, Fine DH. Nitric Oxide dosed in short bursts at high concentrations may protect against Covid 19. Nitric Oxide. 2020.
  81. Rizza S, Muniyappa R, Iantorno M, Kim J-a, Chen H, Pullikotil P, et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. The Journal of Clinical Endocrinology & Metabolism. 2011;96(5):E782-E92.
  82. Maneesai P, Bunbupha S, Potue P, Berkban T, Kukongviriyapan U, Kukongviriyapan V, et al. Hesperidin prevents nitric oxide deficiency-induced cardiovascular remodeling in rats via suppressing TGF-β1 and MMPs protein expression. Nutrients. 2018;10(10):1549.
  83. Berlin I, Thomas D, Le Faou A-L, Cornuz J. COVID-19 and smoking. Nicotine & Tobacco Research. 2020.
  84. Froldi G, Dorigo P. Endothelial dysfunction in Coronavirus disease 2019 (COVID-19): gender and age influences. Medical hypotheses. 2020:110015.
  85. Luo H, Rankin GO, Liu L, Daddysman MK, Jiang B-H, Chen YC. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutrition and cancer. 2009;61(4):554-63.
  86. Yu ES, Min HJ, An SY, Won HY, Hong JH, Hwang ES. Regulatory mechanisms of IL-2 and IFNγ suppression by quercetin in T helper cells. Biochemical pharmacology. 2008;76(1):70-8.
  87. Sternberg Z, Chadha K, Lieberman A, Hojnacki D, Drake A, Zamboni P, et al. Quercetin and interferon-β modulate immune response (s) in peripheral blood mononuclear cells isolated from multiple sclerosis patients. Journal of neuroimmunology. 2008;205(1):142-7.