خاموش شدن ژن به روش اپی ژنتیک در شروع و پیشرفت سرطان کولورکتال

نوع مقاله : مقاله مروری

نویسندگان

مرکز تحقیقات بیماری های غیر واگیر، دانشگاه علوم پزشکی جهرم، جهرم، ایران

چکیده

مقدمه: سرطان کولورکتال (colorectal cancer, CRC)، سومین سرطان شاخته شده و چهارمین علت منجر به مرگ در دنیاست. این بیماری حاصل مراحل مختلفی است که باعث انباشته شدن تعدیلات ژنتیک و اپی ژنتیک در ژن های سرکوب کننده سرطان و ژن های سرطان زا می شود. تعدیلات اپی ژنتیک، یک نقش اساسی در تنظیم نسخه برداری و بیان ژن بازی می کنند. این تعدیلات شامل متیلاسیون DNA در نواحی پروموتر (promoter) ژن، تعدیلات هیستون و مداخلات RNA غیر کدشونده (non‐coding RNA) است. تعدیلات هیستون و متیلاسیون DNA یک ترکیب دخیل در خاموش شدن ژن ها هستند که منجر به تومورزایی می شوند. متیلاسیون DNA، بوسیله آنزیم های DNA متیل ترانس فراز(DNA methyltransferases, DNMTs) که گروه متیل را به اس-آدنوزین متیونین به منظور الگوی متیلاسیون ژنومی و خاموش شدن ژن منتقل می کنند انجام می شود. در این تحقیق، ما در باره اطلاعات رایج در حال رشد مربوط به مداخله هایپرمتیلاسیون چندین ژن سرکوب کننده سرطان و مکانسیم مولکولی آنها در سرطان کولورکتال بحث می کنیم. روش ها: برای این مقاله مروری، مطالعات قابل قبول با استفاده از PubMed, SCOPUS, NCBI  و Ovid database و با انتخاب کلمات کلیدی لازم از فهرست MeSH (Medical Subject Headings) بدست آمد. یافته ها: ما دریافتیم که آنزیم های DNA متیل ترانس فراز می توانند باعث متیلاسیون ژن های سرکوب کننده سرطان و در نتیجه القاء سرطان گردند. نتیجه: کاهش بیان ژن های سرکوب کننده سرطان باعث القاء سرطان می گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Epigenetic gene silencing in colorectal cancer initiation and progression, review article

نویسندگان [English]

  • Fraidoon Kavoosi
  • Masumeh Sanaei
Research center for non-communicable diseases, Jahrom University of medical sciences, Jahrom, Iran
چکیده [English]

Background: Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the fourth cause of cancer death worldwide. It develops through multiple steps that results from the progressive accumulation of mutations and epigenetic modifications in tumor suppressor genes (TSGs) and oncogenes. Epigenetic modifications play a fundamental role in the regulation and transcription of gene expression. These modifications involve DNA methylation of promoter regions, histone modifications, and non‐coding RNAs (ncRNAs) interventions. Histone modification and DNA methylation are involved in a complex network to maintain gene silencing lead to tumorigenesis. DNA methylation is methylated by DNA methyltransferases (DNMTs), which transfer the methyl group from S-adenosylmethionine (SAM) to generate patterns of genomic methylation that silence genes. In this review, we discuss the current and fast-growing knowledge about the contribution of the hypermethylation of several TSGs toward an understanding of molecular mechanisms of CRC. Methods. For this review article, the eligible studies were obtained by searching PubMed, SCOPUS, NCBI, and Ovid database with the MeSH terms combined with free terms. Results. We found evidence that DNA methyltransferases can induce DNA methylation in tumor suppressor genes (TSGs) resulting in cancer induction. Conclusion. The downregulation of TSGs expression might be responsible in promoting cancer induction.

کلیدواژه‌ها [English]

  • Epigenetics
  • Methylation
  • Gene expression
  • Colorectal cancer
  1. Favoriti P, Carbone G, Greco M, Pirozzi F, Pirozzi REM, Corcione F. Worldwide burden of colorectal cancer: a
    review. Updates Surg 2016; 68(1):7-11.
    2. Marley AR, Nan H. Epidemiology of colorectal cancer. International journal of molecular epidemiology and genetics
    2016;7(3):105-111.
    3. Migliore L, Migheli F, Spisni R, Coppedè F. Genetics, cytogenetics, and epigenetics of colorectal cancer. BioMed
    Research International 2011;5: 1-19
    4. Migheli F, Migliore L. Epigenetics of colorectal cancer. Clin Genet 2012;81(4):312-318.
    5.Matsubara N. Epigenetic regulation and colorectal cancer. Dis Colon Rectum 2012;55(1):96-104.
    6. Espada J, Esteller M. DNA methylation and the functional organization of the nuclear compartment. Seminars in cell
    & developmental biology. 21. Elsevier; 2010:238-246.
    7. Jia Y, Guo M. Epigenetic changes in colorectal cancer. Chin J Cancer 2013;32(1):21-28.
    8. Samowitz WS. The CpG island methylator phenotype in colorectal cancer. The Journal of molecular diagnostics:
    JMD 2007;9(3):281-289.
    9. Agrawal A, Murphy RF, Agrawal DK. DNA methylation in breast and colorectal cancers. Mod Pathol
    2007;20(7):711-721
    10. Jair K-W, Bachman KE, Suzuki H, Ting AH, Rhee I, Yen R-WC, et al. De novo CpG island methylation in human
    cancer cells. Cancer Res 2006;66(2):682-692.
    11. Copeland RA, Olhava EJ, Scott MP. Targeting epigenetic enzymes for drug discovery. Curr Opin Chem Biol
    2010;14(4):505-510.
    12. Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and
    therapies. Nature Reviews Cancer 2001;1(3):194-202.
    13. Kawamata N, Inagaki N, Mizumura S, Sugimoto Kj, Sakajiri S, Ohyanagi‐Hara M, et al. Methylation status analysis
    of cell cycle regulatory genes (p16INK4A, p15INK4B, p21Waf1/Cip1, p27Kip1 and p73) in natural killer cell
    disorders. Eur J Haematol 2005;74(5):424-429.
    14. Khatami F, Larijani B, Heshmat R, Keshtkar A, Mohammadamoli M, Teimoori-Toolabi L, et al. Meta-analysis of
    promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer. PloS one.
    2017;12(9): 0184892.
    15. Hu X-T, He C. Recent progress in the study of methylated tumor suppressor genes in gastric cancer. Chinese
    Journal of Cancer. 2013;32(1):31-41.
    16. Radpour R, Barekati Z, Kohler C, Lv Q, Bürki N, Diesch C, et al. Hypermethylation of tumor suppressor genes
    involved in critical regulatory pathways for developing a blood-based test in breast cancer. PloS one. 2011;6(1):16080.
    17. Ozdemir F, Altinisik J, Karateke A, Coksuer H, Buyru N. Methylation of tumor suppressor genes in ovarian cancer.
    Experimental and therapeutic medicine. 2012;4(6):1092-1096.
    18. Zhao M, Sun J, Zhao Z. TSGene: a web resource for tumor suppressor genes. Nucleic acids research. 2013;41(D1):
    970-976
    19. Sanaei M, Kavoosi F. Effects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene
    Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line. Iranian Journal of
    Pediatric Hematology & Oncology 2019.
    20. Sanaei M, Kavoosi F. Effect of 5-aza-2'-deoxycytidine in comparison to valproic acid and trichostatin A on histone
    deacetylase 1, DNA methyltransferase 1, and CIP/KIP family (p21, p27, and p57) genes expression, cell growth
    inhibition, and apoptosis induction in colon cancer SW480 cell line. Advanced biomedical research 2019;8: 52.
    21. Sanaei M, Kavoosi F. Effect of DNA methyltransferase in comparison to and in combination with histone
    deacetylase inhibitors on hepatocellular carcinoma HepG2 cell line. Asian Pacific journal of cancer prevention: APJCP
    2019;20(4):1119.
    22. Sanaei M, Kavoosi F, Valiani A, Ghobadifar MA. Effect of genistein on apoptosis and proliferation of
    hepatocellular Carcinoma Hepa1-6 Cell Line. Int J Prev Med 2018;9: 12.
    23. Sanaei M, Kavoosi F, Roustazadeh A, Golestan F. Effect of genistein in comparison with trichostatin a on
    reactivation of DNMTs genes in hepatocellular carcinoma. Journal of clinical and translational hepatology
    2018;6(2):141.
    24. Velez AMA, Howard MS. Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin. N Am J Med
    Sci 2015;7(5):176.
    25. Cooper S. Checkpoints and restriction points in bacteria and eukaryotic cells. Bioessays 2006;28(10):1035-1039.
    26. Molin S, Grgic M, Ruzicka T, Herzinger T. Silencing of the cell cycle checkpoint gene 14‐3‐3σ in basal cell
    carcinomas correlates with reduced expression of IKK‐α. J Eur Acad Dermatol Venereol 2014;28(8):1113-1116.
    27. Sherr CJ. Principles of tumor suppression. Cell 2004;116(2):235-46.
    28. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene 2001;20(24):3139-3155.
    29. Mojarad EN, Kuppen PJ, Aghdaei HA, Zali MR. The CpG island methylator phenotype (CIMP) in colorectal
    cancer. Gastroenterology and hepatology from bed to bench 2013;6(3):120.
    30. Sarabi MM, Naghibalhossaini F. Association of DNA methyltransferases expression with global and gene‐specific
    DNA methylation in colorectal cancer cells. Cell Biochem Funct 2015;33(7):427-33.
    31. Komata T, Kanzawa T, Takeuchi H, Germano I, Schreiber M, Kondo Y, et al. Antitumour effect of cyclindependent kinase inhibitors (p16 INK4A, p18 INK4C, p19 INK4D, p21 WAF1/CIP1 and p27 KIP1) on malignant
    glioma cells. Br J Cancer 2003;88(8):1277-1280.
    32.Jubb A, Bell S, Quirke P. Methylation and colorectal cancer. The Journal of pathology 2001;195(1):111-134.
    33. Zhou Z, Zhang H, Lai J, Diao D, Li W, Dang C, et al. Relationships between p14ARF gene methylation and
    clinicopathological features of colorectal cancer: a meta-analysis. PLoS One 2016;11(3): 1-8.
    34. Esteller M, Tortola S, Toyota M, Capella G, Peinado MA, Baylin SB, et al. Hypermethylation-associated
    inactivation of p14ARF is independent of p16INK4a methylation and p53 mutational status. Cancer Res
    2000;60(1):129-133.
    35. Nilsson TK, Löf-Öhlin ZM, Sun X-F. DNA methylation of the p14ARF, RASSF1A and APC1A genes as an
    independent prognostic factor in colorectal cancer patients. Int J Oncol 2013;42(1):127-133.
    36. Ishiguro A, Takahata T, Saito M, Yoshiya G, Tamura Y, Sasaki M, et al. Influence of methylated p15 INK4b and
    p16 INK4a genes on clinicopathological features in colorectal cancer. J Gastroenterol Hepatol 2006;21(8):1334-1339.
    37. Coppedè F, Lopomo A, Spisni R, Migliore L. Genetic and epigenetic biomarkers for diagnosis, prognosis and
    treatment of colorectal cancer. World journal of gastroenterology: WJG 2014;20(4):943.
    38. Gagliardi G, Biricotti M, Failli A, Orsini G, Consolini R, Migheli F, et al, Spinelli C, Spisni R. Colorectal
    carcinoma and folate. Ann Ital Chir 2013; 84:123-131.
    39. Chen Y-Z, Liu D, Zhao Y-X, Wang H-T, Gao Y, Chen Y. Relationships between p16 gene promoter methylation
    and clinicopathologic features of colorectal cancer: A meta-analysis of 27 cohort studies. DNA Cell Biol
    2014;33(10):729-738.
    40. Kim BN, Yamamoto H, Ikeda K, Damdinsuren B, Sugita Y, Ngan CY, et al. Methylation and expression of
    p16INK4 tumor suppressor gene in primary colorectal cancer tissues. Int J Oncol 2005; 26(5):1217-1226.
    41. Kim JH, Yoon SY, Kim C-N, Joo JH, Moon SK, Choe IS, et al. The Bmi-1 oncoprotein is overexpressed in human
    colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett 2004; 203(2):217-224.
    42. Burri N, Shaw P, Bouzourene H, Sordat I, Sordat B, Gillet M, et al. Methylation silencing and mutations of the p14
    ARF and p16 INK4a genes in colon cancer. Lab Invest 2001; 81 (2): 217-229.
    43. Mitomi H, Fukui N, Tanaka N, Kanazawa H, Saito T, Matsuoka T, et al. Aberrant p16 INK4a methylation is a
    frequent event in colorectal cancers: prognostic value and relation to mRNA expression and immunoreactivity. J Cancer
    Res Clin Oncol 2010; 136(2):323.
  2. 44. Esteller M, Gonzalez S, Risques R, Marcuello E, Mangues R, Germa J, et al. K-ras and p16 aberrations confer poor
    prognosis in human colorectal cancer. J Clin Oncol 2001;19(2):299-304.
    45. Nakayama H, Hibi K, Takase T, Yamazaki T, Kasai Y, Ito K, et al. Molecular detection of p16 promoter
    methylation in the serum of recurrent colorectal cancer patients. Int J Cancer 2003;105(4):491-493.
    46. Hibi K, Nakayama H, Koike M, Kasai Y, Ito K, Akiyama S, et al. Colorectal cancers with both p16 and p14
    methylation show invasive characteristics. Jap J Cancer Res 2002;93(8):883-887.
    47. Quereda V, Porlan E, Cañamero M, Dubus P, Malumbres M. An essential role for Ink4 and Cip/Kip cell-cycle
    inhibitors in preventing replicative stress. Cell Death Differ 2016;23(3):430-441.
    48. Fang J-Y, Lu J, Chen Y-X, Yang L. Effects of DNA methylation on expression of tumor suppressor genes and
    proto-oncogene in human colon cancer cell lines. World J Gastroenterol 2003;9(9):1976.
    49. Fang JY, Chen YX, Juan L, Rong L, Li Y, Zhu HY, Gu WQ, et al. Epigenetic modification regulates both
    expression of tumor-associated genes and cell cycle progressing in human colon cancer cell lines: Colo-320 and
    SW1116. Cell Res 2004;14(3):217-226.
    50. Zeng H, Yan L, Cheng W-H, Uthus EO. Dietary selenomethionine increases exon-specific DNA methylation of the
    p53 gene in rat liver and colon mucosa. The Journal of nutrition 2011;141(8):1464-1468.
    51. Suzuki H, Igarashi S, Nojima M, Maruyama R, Yamamoto E, Kai M, et al. IGFBP7 is a p53-responsive gene
    specifically silenced in colorectal cancer with CpG island methylator phenotype. Carcinogenesis 2010;31(3):342-349.
    52. Lam K, Pan K, Linnekamp JF, Medema JP, Kandimalla R. DNA methylation based biomarkers in colorectal cancer:
    a systematic review. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2016;1866(1):106-120.
    53. Esteller M, Fraga MF, Guo M, Garcia-Foncillas J, Hedenfalk I, Godwin AK, et al. DNA methylation patterns in
    hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 2001;10(26):3001-3007.
    54. Xu X-L, Yu J, Zhang H-Y, Sun M-H, Gu J, Du X, et al. Methylation profile of the promoter CpG islands of 31
    genes that may contribute to colorectal carcinogenesis. World journal of gastroenterology: WJG 2004;10(23):3441.
    55. Kim M, Chang X, Yamashita K, Nagpal J, Baek J, Wu G, et al. Aberrant promoter methylation and tumor
    suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene 2008;27(25):3624-3634.
    56. Gan L, Chen S, Zhong J, Wang X, Lam EK, Liu X, et al. ZIC1 is downregulated through promoter
    hypermethylation, and functions as a tumor suppressor gene in colorectal cancer. PLoS One 2011;6(2): 17-24.
    57. Bagci B, Sari M, Karadayi K, Turan M, Ozdemir O, Bagci G. KRAS, BRAF oncogene mutations and tissue specific
    promoter hypermethylation of tumor suppressor SFRP2, DAPK1, MGMT, HIC1 and p16 genes in colorectal cancer
    patients. Cancer Biomark 2016;17(2):133-143.