روش های تشخیص بیماریهای ویروسی با تاکید بر زیست حسگرها

نوع مقاله : مقاله مروری

نویسندگان

1 دانشگاه تهران، دانشکده علوم و فنون نوین ، گروه مهندسی علوم زیستی، بخش نانوبیوتکنولوژی

2 گروه مهندسی علوم زیستی،دانشکده علوم و فنون نوین دانشگاه تهران

چکیده

حوادث اخیر مربوط به شیوع ویروس‌های مختلف در چند سال گذشته، که به‌دلیل همه‌گیری ناشی از بیماری ویروس کرونا در سال 2019 (COVID-19) به صورت نمایی افزایش یافته است، نگرانی و جست‌وجوی اطلاعات بیشتر در مورد بیماری های مبتنی بر ویروس را افزایش داده است. در حال حاضر، تشخیص ویروس با استفاده از روش های متکی بر واکنش زنجیره ای پلیمراز (PCR) دارای بالاترین میزان حساسیت برای تشخیص ویروس را فراهم می آورد. با این حال، این روش دارای مشکلاتی است. تحقیقات مربوط به زیست‌حسگرها نیز در حال تبدیل شدن به گسترده‌ترین رشته مورد مطالعه است زیرا زیست‌حسگرها آسان، سریع، کم هزینه، بسیار حساس و انتخابی به پیشرفت داروهای نسل بعدی کمک می‌کنند. بنابراین نانوزیست‌حسگرها ابزاری نویدبخش جدیدی برای تشخیص ویروس هستند. این مقاله مروری یک بررسی مختصر از مسئله تشخیص ویروس، شامل تشخیص ساختار هدف ویروس‌ها مانند اسیدهای‌نوکلئیک یا پروتئین‌ها را ارائه می دهد. این مقاله مروری اصول مختلف تشخیص و روش‌های ساخت هریک از انواع زیست‌حسگر ویروس را پوشش می‌دهد و در نهایت چند کاربرد آنها را در تشخیصی ویروس‌ها معرفی و به این نتیجه می رسد که نانوزیست‌حسگرهای تشخیص ویروس‌ها با حساسیت بالاتر، دقت بیشتر و تشخیص سریع‌تر مطرح شده‌اند و نسبت به روش‌های رایج در حال گسترش هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Methods of viral diseases diagnosis based on biosensors

نویسندگان [English]

  • Mahsa Kalantar 1
  • Marjan Malekmohamadi 1
  • Ali hossein Rezayan 2
1 University of Tehran, Faculty of New Sciences and Technologies, Life Science Engineering department
2 Life Science Engineering department, Faculty of New Sciences and Technologies, University of Tehran
چکیده [English]

The recent events of outbreaks related to different viruses in the past few years, increased exponentially by the pandemic caused by the coronavirus disease 2019 (COVID-19), raised a concern and increased the search for more information on viruses-based diseases. Currently, the detection of viruses using methods based on polymerase chain reaction (PCR) has the highest sensitivity. However, this method has its drawbacks. Research of biosensors is also becoming the most extensively studied discipline because of the easy, rapid, low-cost, highly sensitive, and highly selective biosensors contribute to advances in next-generation medicines. Thus, biosensors represent a new promising tool for virus detection. This review gives a brief survey of the issue of viral detection, comprising diagnostics of a target structure of viruses, such as nucleic acids or proteins. This article reviews the different principles of detection and manufacturing methods for each type of virus biosensors and finally introduces some of their applications in virus diagnosis, expanding compared to conventional methods.

کلیدواژه‌ها [English]

  • Virus
  • Biosensor
  • Early Virus Diagnosis
  • Infectious Diseases
  • Nanoparticle
  1. Luka G, Ahmadi A, Najjaran H, Alocilja E, DeRosa M, Wolthers K, et al. Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors. 2015;15(12):30011-31.
  2. Dehghani Z, Hosseini M, Mohammadnejad J, Bakhshi B, Rezayan AH. Colorimetric aptasensor for Campylobacter jejuni cells by exploiting the peroxidase like activity of Au@ Pd nanoparticles. Microchimica Acta. 2018;185(10):1-9.
  3. Rodovalho V, Alves L, Castro A, Madurro J, Brito-Madurro A, Santos A. Biosensors applied to diagnosis of infectious diseases–An update. Austin J Biosens & Bioelectron. 2015;1(3):1015.
  4. Ribeiro BV, Cordeiro TAR, e Freitas GRO, Ferreira LF, Franco DL. Biosensors for the detection of respiratory viruses: A review. Talanta Open. 2020:100007.
  5. Saylan Y, Erdem Ö, Ünal S, Denizli A. An alternative medical diagnosis method: Biosensors for virus detection. Biosensors. 2019;9(2):65.
  6. Krejcova L, Michalek P, Rodrigo MM, Heger Z, Krizkova S, Vaculovicova M, et al. Nanoscale virus biosensors: state of the art. Nanobiosensors in Disease Diagnosis. 2015;4:47-66.
  7. Bagdeli S, Rezayan AH, Taheri RA, Kamali M, Hosseini M. FRET-based immunoassay using CdTe and AuNPs for the detection of OmpW antigen of Vibrio cholerae. Journal of Luminescence. 2017;192:932-9.
  8. Dehghani Z, Mohammadnejad J, Hosseini M, Rezayan AH. Whole cell FRET immunosensor based on graphene oxide and graphene dot for Campylobacter jejuni detection. Food chemistry. 2020;309:125690.
  9. Nikfarjam A, Rezayan AH, Mohammadkhani G, Mohammadnejad J. Label-free detection of digoxin using localized surface plasmon resonance-based nanobiosensor. Plasmonics. 2017;12(1):157-64.
  10. Taheri R, Rezayan A, Rahimi F, MOHAMMADNEZHAD J, Kamali M, Saberi F. APPLICATION OF SURFACE PLASMON RESONANCE (SPR) SENSORS FOR DETECTIONOF VIBRIO CHOLERA. 2015.
  11. Taheri RA, Rezayan AH, Rahimi F, Mohammadnejad J, Kamali M. Development of an immunosensor using oriented immobilized anti-OmpW for sensitive detection of Vibrio cholerae by surface plasmon resonance. Biosensors and Bioelectronics. 2016;86:484-8.
  12. Taheri RA, Rezayan AH, Rahimi F, Mohammadnejad J, Kamali M. Evaluating the potential of an antibody against recombinant OmpW antigen in detection of Vibrio cholerae by surface plasmon resonance (SPR) biosensor. Plasmonics. 2017;12(5):1493-504.
  13. Li F, Feng Y, Dong P, Tang B. Gold nanoparticles modified electrode via a mercapto-diazoaminobenzene monolayer and its development in DNA electrochemical biosensor. Biosensors and Bioelectronics. 2010;25(9):2084-8.
  14. Xue D, Elliott CM, Gong P, Grainger DW, Bignozzi CA, Caramori S. Indirect electrochemical sensing of DNA hybridization based on the catalytic oxidation of cobalt (II). Journal of the American Chemical Society. 2007;129(7):1854-5.
  15. Chang H, Wang Y, Li J. Electrochemical DNA sensors: from nanoconstruction to biosensing. Current Organic Chemistry. 2011;15(4):506-17.
  16. Esfandyarpour R, Esfandyarpour H, Harris JS, Davis RW. Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device. Nanotechnology. 2013;24(46):465301.
  17. Vlachova J, Tmejova K, Kopel P, Korabik M, Zitka J, Hynek D, et al. A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode. Sensors. 2015;15(2):2438-52.
  18. Palecek E, Bartosik M. Electrochemistry of nucleic acids. Chemical Reviews. 2012;112(6):3427-81.
  19. Zari N, Amine A, Ennaji M. Label-free DNA biosensor for electrochemical detection of short DNA sequences related to human papilloma virus. Analytical letters. 2009;42(3):519-35.
  20. Dai Tran L, Nguyen BH, Van Hieu N, Tran HV, Le Nguyen H, Nguyen PX. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes. Materials Science and Engineering: C. 2011;31(2):477-85.
  21. Ruan S, Li Z, Qi H, Gao Q, Zhang C. Label-free supersandwich electrogenerated chemiluminescence biosensor for the determination of the HIV gene. Microchimica Acta. 2014;181(11-12):1293-300.
  22. Jiang X, Spencer MG. Electrochemical impedance biosensor with electrode pixels for precise counting of CD4+ cells: A microchip for quantitative diagnosis of HIV infection status of AIDS patients. Biosensors and Bioelectronics. 2010;25(7):1622-8.
  23. Wang R, Wang Y, Lassiter K, Li Y, Hargis B, Tung S, et al. Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1. Talanta. 2009;79(2):159-64.
  24. Hnaien M, Diouani MF, Helali S, Hafaid I, Hassen WM, Renault NJ, et al. Immobilization of specific antibody on SAM functionalized gold electrode for rabies virus detection by electrochemical impedance spectroscopy. Biochemical Engineering Journal. 2008;39(3):443-9.
  25. Hejazi M, Pournaghi-Azar M, Ahour F. Electrochemical detection of short sequences of hepatitis C 3a virus using a peptide nucleic acid-assembled gold electrode. Analytical biochemistry. 2010;399(1):118-24.
  26. Fang X, Tan OK, Tse MS, Ooi EE. A label-free immunosensor for diagnosis of dengue infection with simple electrical measurements. Biosensors and Bioelectronics. 2010;25(5):1137-42.
  27. Corthell JT. Basic Molecular Protocols in Neuroscience: Tips, Tricks, and Pitfalls: Academic Press; 2014.
  28. Rickert J, Göpel W, Beck W, Jung G, Heiduschka P. A ‘mixed’self-assembled monolayer for an impedimetric immunosensor. Biosensors and Bioelectronics. 1996;11(8):757-68.
  29. de F. Paulo Tr, Abruña HcD, Diógenes IC. Thermodynamic, Kinetic, Surface p K a, and Structural Aspects of Self-Assembled Monolayers of Thio Compounds on Gold. Langmuir. 2012;28(51):17825-31.
  30. Lin C-C, Chen L-C, Huang C-H, Ding S-J, Chang C-C, Chang H-C. Development of the multi-functionalized gold nanoparticles with electrochemical-based immunoassay for protein A detection. Journal of Electroanalytical Chemistry. 2008;619:39-45.
  31. Park J-Y, Park S-M. DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors. 2009;9(12):9513-32.
  32. Mashhadizadeh MH, Talemi RP. A highly sensitive and selective hepatitis B DNA biosensor using gold nanoparticle electrodeposition on an Au electrode and mercaptobenzaldehyde. Analytical Methods. 2014;6(22):8956-64.
  33. Malecka K, Grabowska I, Radecki J, Stachyra A, Góra‐Sochacka A, Sirko A, et al. Electrochemical detection of avian influenza virus genotype using amino‐ssDNA probe modified gold electrodes. Electroanalysis. 2013;25(8):1871-8.
  34. Vaughan R, O’sullivan C, Guilbault G. Sulfur based self-assembled monolayers (SAM’s) on piezoelectric crystals for immunosensor development. Fresenius' journal of analytical chemistry. 1999;364(1-2):54-7.
  35. Skládal P, dos Santos Riccardi C, Yamanaka H, da Costa PI. Piezoelectric biosensors for real-time monitoring of hybridization and detection of hepatitis C virus. Journal of virological methods. 2004;117(2):145-51.
  36. Zhou X, Liu L, Hu M, Wang L, Hu J. Detection of hepatitis B virus by piezoelectric biosensor. Journal of pharmaceutical and biomedical analysis. 2002;27(1-2):341-5.
  37. Dell’Atti D, Zavaglia M, Tombelli S, Bertacca G, Cavazzana AO, Bevilacqua G, et al. Development of combined DNA-based piezoelectric biosensors for the simultaneous detection and genotyping of high risk Human Papilloma Virus strains. Clinica chimica acta. 2007;383(1-2):140-6.
  38. Hong S-R, Jeong H-D, Hong S. QCM DNA biosensor for the diagnosis of a fish pathogenic virus VHSV. Talanta. 2010;82(3):899-903.
  39. Wang R, Li Y. Hydrogel based QCM aptasensor for detection of avian influenzavirus. Biosensors and Bioelectronics. 2013;42:148-55.
  40. Hewa TMP, Tannock GA, Mainwaring DE, Harrison S, Fecondo JV. The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance. Journal of virological methods. 2009;162(1-2):14-21.
  41. Wangchareansak T, Sangma C, Ngernmeesri P, Thitithanyanont A, Lieberzeit PA. Self-assembled glucosamine monolayers as biomimetic receptors for detecting WGA lectin and influenza virus with a quartz crystal microbalance. Analytical and bioanalytical chemistry. 2013;405(20):6471-8.
  42. Kobayashi M, Kikuchi N, Sato A. Optical tomography of fluorophores in dense scattering media based on ultrasound-enhanced chemiluminescence. Applied Physics Letters. 2015;106(2):021103.
  43. Tansi FL, Rüger R, Rabenhold M, Steiniger F, Fahr A, Hilger I. Fluorescence-quenching of a liposomal-encapsulated near-infrared fluorophore as a tool for in vivo optical imaging. JoVE (Journal of Visualized Experiments). 2015(95):e52136.
  44. Obaton A-F, Sanogo Y, Lautru J, Lievre M, Durocher J-N, Dubard J. Development of a new optical reference technique in the field of biology. IEEE Transactions on Instrumentation and Measurement. 2013;62(4):837-44.
  45. Lee C-K, Lin C-W, Lin S, Lee AS-Y, Wu J-Y, Lee S-S, et al. From an integrated biochip detection system to a defensive weapon against the SARS-CoV virus: OBMorph. MRS Online Proceedings Library Archive. 2004;820.
  46. Pires NMM, Dong T, Hanke U, Hoivik N. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Sensors. 2014;14(8):15458-79.
  47. Kim M-G, Shon Y, Lee J, Byun Y, Choi B-S, Kim YB, et al. Double stranded aptamer-anchored reduced graphene oxide as target-specific nano detector. Biomaterials. 2014;35(9):2999-3004.
  48. Padilla-Parra S, Matos PM, Kondo N, Marin M, Santos NC, Melikyan GB. Quantitative imaging of endosome acidification and single retrovirus fusion with distinct pools of early endosomes. Proceedings of the National Academy of Sciences. 2012;109(43):17627-32.
  49. Rossi AM, Wang L, Reipa V, Murphy TE. Porous silicon biosensor for detection of viruses. Biosensors and Bioelectronics. 2007;23(5):741-5.
  50. Grepstad JO, Kaspar P, Johansen I-R, Solgaard O, Sudbø A. Detection of single nano-defects in photonic crystals between crossed polarizers. Optics express. 2013;21(25):31375-89.
  51. Yan R, Scott Lynn N, Kingry LC, Yi Z, Erickson T, Slayden RA, et al. Detection of virus-like nanoparticles via scattering using a chip-scale optical biosensor. Applied Physics Letters. 2012;101(16):161111.
  52. Lu X, Dong X, Zhang K, Han X, Fang X, Zhang Y. A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer. Analyst. 2013;138(2):642-50.
  53. Luo S-C, Sivashanmugan K, Liao J-D, Yao C-K, Peng H-C. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosensors and Bioelectronics. 2014;61:232-40.
  54. Halas NJ, Lal S, Chang W-S, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chemical reviews. 2011;111(6):3913-61.
  55. Lin Y-Y, Liao J-D, Ju Y-H, Chang C-W, Shiau A-L. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus. Nanotechnology. 2011;22(18):185308.
  56. Lin Y-Y, Liao J-D, Yang M-L, Wu C-L. Target-size embracing dimension for sensitive detection of viruses with various sizes and influenza virus strains. Biosensors and Bioelectronics. 2012;35(1):447-51.
  57. Pang Y, Wang J, Xiao R, Wang S. SERS molecular sentinel for the RNA genetic marker of PB1-F2 protein in highly pathogenic avian influenza (HPAI) virus. Biosensors and Bioelectronics. 2014;61:460-5.
  58. Nguyen B, Tanious FA, Wilson WD. Biosensor-surface plasmon resonance: quantitative analysis of small molecule–nucleic acid interactions. Methods. 2007;42(2):150-61.
  59. Pattnaik P. Surface plasmon resonance. Applied biochemistry and biotechnology. 2005;126(2):79-92.
  60. Ermini M, Scarano S, Bini R, Banchelli M, Berti D, Mascini M, et al. A rational approach in probe design for nucleic acid-based biosensing. Biosensors and Bioelectronics. 2011;26(12):4785-90.
  61. Jin W, Lin X, Lv S, Zhang Y, Jin Q, Mu Y. A DNA sensor based on surface plasmon resonance for apoptosis-associated genes detection. Biosensors and Bioelectronics. 2009;24(5):1266-9.
  62. Šípová H, Zhang S, Dudley AeM, Galas D, Wang K, Homola Ji. Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Analytical chemistry. 2010;82(24):10110-5.
  63. Wang S, Yang H, Zhang H, Yang F, Zhou M, Jia C, et al. A surface plasmon resonance–based system to genotype human papillomavirus. Cancer genetics and cytogenetics. 2010;200(2):100-5.
  64. Yao X, Li X, Toledo F, Zurita-Lopez C, Gutova M, Momand J, et al. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Analytical biochemistry. 2006;354(2):220-8.
  65. Kim S-A, Kim S-J, Lee S-H, Park T-H, Byun K-M, Kim S-G, et al. Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor. Journal of the Optical Society of Korea. 2009;13(3):392-7.
  66. Teng J, Gu DY, Xu YQ, Shi L, Li W, Liu CX, et al., editors. Screening method for real-time detection of influenza-A virus in human throat swabs by surface plasmon resonance biosensor. Applied Mechanics and Materials; 2012: Trans Tech Publ.
  67. Xu J, Wan J-y, Yang S-t, Zhang S-f, Xu N, Li N, et al. A surface plasmon resonance biosensor for direct detection of the rabies virus. Acta Veterinaria Brno. 2012;81(2):107-11.
  68. Zheng S, Kim D-K, Park TJ, Lee SJ, Lee SY. Label-free optical diagnosis of hepatitis B virus with genetically engineered fusion proteins. Talanta. 2010;82(2):803-9.
  69. Vaisocherova H, Mrkvová K, Piliarik M, Jinoch P, Šteinbachová M, Homola J. Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus. Biosensors and Bioelectronics. 2007;22(6):1020-6.
  70. Wang R, Zhao J, Jiang T, Kwon YM, Lu H, Jiao P, et al. Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. Journal of virological methods. 2013;189(2):362-9.
  71. Bai H, Wang R, Hargis B, Lu H, Li Y. A SPR aptasensor for detection of avian influenza virus H5N1. Sensors. 2012;12(9):12506-18.
  72. Mandenius C-F, Wang R, Aldén A, Bergström G, Thébault S, Lutsch C, et al. Monitoring of influenza virus hemagglutinin in process samples using weak affinity ligands and surface plasmon resonance. Analytica chimica acta. 2008;623(1):66-75.
  73. Buchapudi KR, Huang X, Yang X, Ji H-F, Thundat T. Microcantilever biosensors for chemicals and bioorganisms. Analyst. 2011;136(8):1539-56.
  74. Faegh S, Jalili N, Sridhar S. A self-sensing piezoelectric microcantilever biosensor for detection of ultrasmall adsorbed masses: theory and experiments. Sensors. 2013;13(5):6089-108.
  75. Godin M, Tabard-Cossa V, Miyahara Y, Monga T, Williams P, Beaulieu L, et al. Cantilever-based sensing: the origin of surface stress and optimization strategies. Nanotechnology. 2010;21(7):075501.
  76. Hansen KM, Thundat T. Microcantilever biosensors. Methods. 2005;37(1):57-64.
  77. Grogan C, Raiteri R, O'Connor G, Glynn T, Cunningham V, Kane M, et al. Characterisation of an antibody coated microcantilever as a potential immuno-based biosensor. Biosensors and Bioelectronics. 2002;17(3):201-7.
  78. Fritz J, Baller M, Lang H, Rothuizen H, Vettiger P, Meyer E, et al. Translating biomolecular recognition into nanomechanics. Science. 2000;288(5464):316-8.
  79. Su M, Li S, Dravid VP. Microcantilever resonance-based DNA detection with nanoparticle probes. Applied Physics Letters. 2003;82(20):3562-4.
  80. Xu D, Liu L, Guan J, Xu J, Wang T, Qin A, et al. Label-free microcantilever-based immunosensors for highly sensitive determination of avian influenza virus H9. Microchimica Acta. 2014;181(3-4):403-10.
  81. Zhang W, Guo S, Carvalho WSP, Jiang Y, Serpe MJ. Portable point-of-care diagnostic devices. Analytical methods. 2016;8(44):7847-67.
  82. Heukelbach J, Alencar CH, Kelvin AA, de Oliveira WK, de Góes Cavalcanti LP. Zika virus outbreak in Brazil. The Journal of Infection in Developing Countries. 2016;10(02):116-20.
  83. Inci F, Filippini C, Baday M, Ozen MO, Calamak S, Durmus NG, et al. Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics. Proceedings of the National Academy of Sciences. 2015;112(32):E4354-E63.
  84. Babamiri B, Salimi A, Hallaj R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosensors and Bioelectronics. 2018;117:332-9.
  85. Lu C-H, Zhang Y, Tang S-F, Fang Z-B, Yang H-H, Chen X, et al. Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosensors and Bioelectronics. 2012;31(1):439-44.
  86. Shafiee H, Lidstone EA, Jahangir M, Inci F, Hanhauser E, Henrich TJ, et al. Nanostructured optical photonic crystal biosensor for HIV viral load measurement. Scientific reports. 2014;4:4116.
  87. Hassen WM, Chaix C, Abdelghani A, Bessueille F, Leonard D, Jaffrezic-Renault N. An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sensors and Actuators B: Chemical. 2008;134(2):755-60.
  88. Tam YJ, Zeenathul NA, Rezaei MA, Mustafa NH, Azmi MLM, Bahaman AR, et al. Wide dynamic range of surface‐plasmon‐resonance‐based assay for hepatitis B surface antigen antibody optimal detection in comparison with ELISA. Biotechnology and applied biochemistry. 2017;64(5):735-44.
  89. Uzun L, Say R, Ünal S, Denizli A. Production of surface plasmon resonance based assay kit for hepatitis diagnosis. Biosensors and Bioelectronics. 2009;24(9):2878-84.
  90. Li X, Scida K, Crooks RM. Detection of hepatitis B virus DNA with a paper electrochemical sensor. Analytical chemistry. 2015;87(17):9009-15.
  91. İstek MM, Erdem MM, Gürsan AE. Impedimetric nanobiosensor for the detection of sequence-selective DNA hybridization. Hacettepe Journal of Biology and Chemistry. 2019;46(4):495-503.
  92. Zengin A, Tamer U, Caykara T. SERS detection of hepatitis B virus DNA in a temperature‐responsive sandwich‐hybridization assay. Journal of Raman Spectroscopy. 2017;48(5):668-72.
  93. Liu Y, Shen T, Hu L, Gong H, Chen C, Chen X, et al. Development of a thermosensitive molecularly imprinted polymer resonance light scattering sensor for rapid and highly selective detection of hepatitis A virus in vitro. Sensors and Actuators B: Chemical. 2017;253:1188-93.
  94. Ilkhani H, Farhad S. A novel electrochemical DNA biosensor for Ebola virus detection. Analytical biochemistry. 2018;557:151-5.
  95. Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano letters. 2010;10(12):4962-9.
  96. Cai H, Parks J, Wall T, Stott M, Stambaugh A, Alfson K, et al. Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Scientific reports. 2015;5:14494.
  97. Afsahi S, Lerner MB, Goldstein JM, Lee J, Tang X, Bagarozzi Jr DA, et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosensors and Bioelectronics. 2018;100:85-8.
  98. Kaushik A, Yndart A, Kumar S, Jayant RD, Vashist A, Brown AN, et al. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Scientific reports. 2018;8(1):1-5.
  99. Song J, Mauk MG, Hackett BA, Cherry S, Bau HH, Liu C. Instrument-free point-of-care molecular detection of Zika virus. Analytical chemistry. 2016;88(14):7289-94.
  100. Ashiba H, Sugiyama Y, Wang X, Shirato H, Higo-Moriguchi K, Taniguchi K, et al. Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels. Biosensors and Bioelectronics. 2017;93:260-6.
  101. Lee J, Morita M, Takemura K, Park EY. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosensors and Bioelectronics. 2018;102:425-31.
  102. Weerathunge P, Ramanathan R, Torok VA, Hodgson K, Xu Y, Goodacre R, et al. Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor. Analytical chemistry. 2019;91(5):3270-6.
  103. Sayhi M, Ouerghi O, Belgacem K, Arbi M, Tepeli Y, Ghram A, et al. Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization-free screen printed carbon microelectrode. Biosensors and Bioelectronics. 2018;107:170-7.
  104. Tam PD, Van Hieu N, Chien ND, Le A-T, Tuan MA. DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. Journal of Immunological Methods. 2009;350(1-2):118-24.
  105. Pang Y, Rong Z, Wang J, Xiao R, Wang S. A fluorescent aptasensor for H5N1 influenza virus detection based-on the core–shell nanoparticles metal-enhanced fluorescence (MEF). Biosensors and Bioelectronics. 2015;66:527-32.
  106. Vollmer F, Arnold S, Keng D. Single virus detection from the reactive shift of a whispering-gallery mode. Proceedings of the National Academy of Sciences. 2008;105(52):20701-4.
  107. Zhang G-J, Zhang L, Huang MJ, Luo ZHH, Tay GKI, Lim E-JA, et al. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sensors and Actuators B: Chemical. 2010;146(1):138-44.
  108. Lim JM, Kim JH, Ryu MY, Cho CH, Park TJ, Park JP. An electrochemical peptide sensor for detection of dengue fever biomarker NS1. Analytica chimica acta. 2018;1026:109-16.
  109. Deng J, Toh C-S. Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of dengue virus. Sensors. 2013;13(6):7774-85.
  110. Jahanshahi P, Zalnezhad E, Sekaran SD, Adikan FRM. Rapid immunoglobulin M-based dengue diagnostic test using surface plasmon resonance biosensor. Scientific reports. 2014;4:3851.
  111. Jin CE, Lee TY, Koo B, Sung H, Kim S-H, Shin Y. Rapid virus diagnostic system using bio-optical sensor and microfluidic sample processing. Sensors and Actuators B: Chemical. 2018;255:2399-406.
  112. Prabowo BA, Wang RY, Secario MK, Ou P-T, Alom A, Liu J-J, et al. Rapid detection and quantification of Enterovirus 71 by a portable surface plasmon resonance biosensor. Biosensors and Bioelectronics. 2017;92:186-91.
  113. Riedel T, Rodriguez-Emmenegger C, de los Santos Pereira A, Bědajánková A, Jinoch P, Boltovets PM, et al. Diagnosis of Epstein–Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosensors and Bioelectronics. 2014;55:278-84.
  114. Bai W, Spivak DA. A double‐imprinted diffraction‐grating sensor based on a virus‐responsive super‐aptamer hydrogel derived from an impure extract. Angewandte Chemie International Edition. 2014;53(8):2095-8.
  115. Inan H, Wang S, Inci F, Baday M, Zangar R, Kesiraju S, et al. Isolation, detection, and quantification of cancer biomarkers in HPV-associated malignancies. Scientific reports. 2017;7(1):1-11.
  116. Birnbaumer GM, Lieberzeit PA, Richter L, Schirhagl R, Milnera M, Dickert FL, et al. Detection of viruses with molecularly imprinted polymers integrated on a microfluidic biochip using contact-less dielectric microsensors. Lab on a Chip. 2009;9(24):3549-56.
  117. Feng W, Liang C, Gong H, Cai C. Sensitive detection of Japanese encephalitis virus by surface molecularly imprinted technique based on fluorescent method. New Journal of Chemistry. 2018;42(5):3503-8.