اثر جهش های گریز بر پایداری آنتی ژن سطحی S در مبتلایان به هپاتیت B مزمن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه بیوتکنولوژی، دانشگاه آزاد اسلامی، واحد علوم تحقیقات

2 دانشیار، ژنتیک مولکولی، موسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 موسسه تحقیقات واکسن و سرم سازی رازی، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

مقدمه: سویه‌های جهش یافته مقاوم به آنالوگ‌های نوکلئوزیدی/نوکلئوتیدی ویروس هپاتیت B (HBV) در نتیجه طولانی شدن زمان مصرف و بروز پلی-مرفیسم تک نوکلئوتیدی (SNP) و جهش‌های گریز پدیدار می‌شوند. هدف از مطالعه حاضر ، شناسایی فشارهای انتخابی و جهش فرار ایمنی در ژن HBsAg (S) در بیماران مبتلا به HBV مزمن است.
مواد و روش ها: در این مطالعه مقطعی که در سال 1397 در شهر کرج انجام شد، پنجاه بیمار مبتلا به هپاتیت B مزمن در دو گروه تحت درمان و بدون درمان دسته‌بندی شدند. تعداد کپی‌های DNA ویروس هر بیمار با real time PCR برآورد شده و توالی ژن S تعیین شد. اثر هر SNP بر پایداری پروتئین S با I-mutant و برآورد میزان انرژی آزاد DDG پیش بینی شد.
یافته ها: کمترین میزان بار ویروس و بیشترین آن به ترتیب 101 × 1/1 و ml/108 × 3/4 کپی برآورد شد. بیشترین تعداد جهش منجر به تغییر شامل Q101R، T115N، S143L، و Q129P در یک فرد با سابقه مصرف دارو تعیین شد. در یک بیمار بدون درمان، جهش های M133T و L175S مشاهده شد. جهش Q129P، S174N و Y134C نیز در افراد دیگر با سابقه درمان مشاهده شد. از مجموع 8 تغییر اسید آمینه، L175S با DDG برابر با Kcal/mol 87/1- بیشترین اثر کاهشی را بر پایداری پروتئین S داشت.
نتیجه گیری: براساس این داده ها، بین SNP ژن S ویروس و پیدایش جهش گریز ارتباط وجود دارد. یافته‌های بررسی‌های جهش‌های گریز می تواند بر بهبود درمان و ایمن سازی علیه عفونت مزمن هپاتیت B اثر گذار باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of the escape mutations on surface antigen S stability in chronic hepatitis B patients

نویسندگان [English]

  • Niloufar Rezaee 1
  • Shahla Shahsavandi 2
  • Mohammad Reza Samiee 3
1 Biotechnology, Islamic Azad University, Science and Research Branch
2 Associated professor, Molecular genetics, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
3 Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization
چکیده [English]

Background: Mutant strains resistant to nucleoside/nucleotide analogs of hepatitis B virus (HBV) emerge due to the prolonged usage and single nucleotide polymorphism (SNP) incidence and escape mutations. The current study aimed to detect the selective pressures and the immune-associated escape mutation in HBsAg (S) gene in chronically HBV-infected patients.
Materials and Methods: In this cross-sectional study in 2013, fifty patients with chronic hepatitis B in Karaj were divided into treated and untreated groups. The number of virus DNA copies was quantified by real-time PCR and S gene was sequenced. The effect of each SNP on S protein stability was predicted with 1-mutant and DDG free energy estimation.
Results: The lowest and the highest viral load in the serum samples were estimated 1.1 × 101/ml and 4.3 × 108/ml copies, respectively. The highest number of mutations leading to amino acid substitution includes Q101R, T115N, S143L, and Q129P was determined in one person who used drug was identified. In one patient without treatment, the M133T and L175S mutations were observed. The Q129P, S174N, and Y134C were also seen in others with a history of treatment. Of the 8 amino acid changes, L175S with DDG equal to 1.87 Kcal/mol had the greatest reduction effect on S protein stability.
Conclusion: According to these data, there is a relationship between the SNP of the virus S gene and the emergence of escape mutations. Findings of studies of escape mutations in human populations can influence the improvement of treatment and immunization against chronic hepatitis B infection.

کلیدواژه‌ها [English]

  • chronic hepatitis B infection
  • escape mutation
  • S gene
  • single nucleotide polymorphism
  1. Nassal M, Schaller H. Hepatitis B virus replication‐an update. Journal of viral hepatitis. 1996;3(5):217-26.
  2. Rabe B, Vlachou A, Panté N, Helenius A, Kann M. Nuclear import of hepatitis B virus capsids and release of the viral genome. Proceedings of the National Academy of Sciences. 2003;100(17):9849-54.
  3. Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev. 2000;64(1):51-68.
  4. Carman WF, Karayiannis P, Waters J, Thomas H, Zanetti A, Manzillo G, et al. Vaccine-induced escape mutant of hepatitis B virus. The lancet. 1990;336(8711):325-9.
  5. Avellon A, Echevarria JM. Frequency of hepatitis B virus ‘a’determinant variants in unselected Spanish chronic carriers. Journal of medical virology. 2006;78(1):24-36.
  6. Kramvis A, Kew M, Francois G. Hepatitis B virus genotypes. Vaccine. 2005;23(19):2409-23.
  7. Alavian SM, Fallahian F, Lankarani KB. The changing epidemiology of viral hepatitis B in Iran. Journal of Gastrointestinal and Liver Diseases. 2007;16(4):403.
  8. Livingston SE, Simonetti JP, Bulkow LR, Homan CE, Snowball MM, Cagle HH, et al. Clearance of hepatitis B e antigen in patients with chronic hepatitis B and genotypes A, B, C, D, and F. Gastroenterology. 2007;133(5):1452-7.
  9. Alavian SM, Hajarizadeh B, Ahmadzad-Asl M, Kabir A, Bagheri-Lankarani K. Hepatitis B Virus infection in Iran: A systematic review. Hepatitis monthly. 2008;8(4).
  10. Arababadi MK, Pourfathollah AA, Jafarzadeh A, Hassanshahi G, Rezvani ME. Association of exon 9 but not intron 8 VDR polymorphisms with occult HBV infection in south‐eastern Iranian patients. Journal of gastroenterology and hepatology. 2010;25(1):90-3.
  11. Poorolajal J, Majdzadeh R. Prevalence of chronic hepatitis B infection in Iran: a review article. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences. 2009;14(4):249.
  12. Flink HJ, Van Zonneveld M, Hansen BE, De Man RA, Schalm SW, Janssen HL. Treatment with Peg-interferon α-2b for HBeAg-positive chronic hepatitis B: HBsAg loss is associated with HBV genotype. The American journal of gastroenterology. 2006;101(2):297.
  13. Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. Journal of viral hepatitis. 2004;11(2):97-107.
  14. Dienstag JL. Benefits and risks of nucleoside analog therapy for hepatitis B. Hepatology. 2009;49(S5):S112-S21.
  15. Nishijima N, Marusawa H, Ueda Y, Takahashi K, Nasu A, Osaki Y, et al. Dynamics of hepatitis B virus quasispecies in association with nucleos (t) ide analogue treatment determined by ultra-deep sequencing. PloS one. 2012;7(4):e35052.
  16. Yeh C-T. Development of HBV S gene mutants in chronic hepatitis B patients receiving nucleotide/nucleoside analogue therapy. Antiviral therapy. 2010;15(3):471.
  17. Locarnini SA, Yuen L. Molecular genesis of drug-resistant and vaccine-escape HBV mutants. Antivir Ther. 2010;15(3 Pt B):451-61.
  18. Hammitt LL HT, Fiore AE, Zanis C, Hummel KB, Dunaway E, Bulkow L, McMahon BJ. . Hepatitis B immunity in children vaccinated with recombinant hepatitis B vaccine beginning at birth: a follow-up study at 15 years. Vaccine. 2007;25:6958-64.
  19. Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. Journal of hepatology. 2009;51(3):581-92.
  20. Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC, McDade H. Viral dynamics in hepatitis B virus infection. Proceedings of the National Academy of Sciences. 1996;93(9):4398-402.
  21. Zoulim F, Locarnini S. Hepatitis B virus resistance to nucleos (t) ide analogues. Gastroenterology. 2009;137(5):1593-608. e2.
  22. Yamamoto K HM, Tsuda F, Itoh K, Akahane Y, Yotsumoto S, Okamoto H, Miyakawa Y, Mayumi M. . Naturally occurring escape mutants of hepatitis B virus with various mutations in the S gene in carriers seropositive for antibody to hepatitis B surface antigen. Journal of virology. 1994;68:2671-6.
  23. Chen CH, Hung CH, Lee CM, Hu TH, Wang JH, Wang JC, et al. Pre-S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg-negative patients. Gastroenterology. 2007;133(5):1466-74.
  24. W G. Diagnostic problems caused by HBsAg mutants—a consensus report of an expert meeting. Intervirology. 2004;47:310-3.
  25. Block TM, Guo H, Guo J-T. Molecular virology of hepatitis B virus for clinicians. Clinics in liver disease. 2007;11(4):685-706.
  26. Cento V, Mirabelli C, Dimonte S, Salpini R, Han Y, Trimoulet P, et al. Overlapping structure of hepatitis B virus (HBV) genome and immune selection pressure are critical forces modulating HBV evolution. Journal of General Virology. 2013;94(1):143-9.
  27. Pollicino T, Isgrò G, Di Stefano R, Ferraro D, Maimone S, Brancatelli S, et al. Variability of reverse transcriptase and overlapping S gene in hepatitis B virus isolates from untreated and lamivudine-resistant chronic hepatitis B patients. Antivir Ther. 2009;14(5):649-54.
  28. Garrido E, Gariglio P, Jindadamrongwech S, Smith DR, Carrillo E, Coursaget P, et al. Diagnostic problems caused by HBsAg mutants–a consensus report of an expert meeting. Intervirology. 2004;47(6):310-3.
  29. Mahinrousta S, Sharafi H, Alavian S, Behnava B, Pouryasin A. Study of HBsAg escape mutations in chronic hepatitis B patients under treatment with nucleos (t) ide analogues. 2012.
  30. Sayan M, Şentürk Ö, Akhan S, Hülagü S, Cekmen M. Monitoring of hepatitis B virus surface antigen escape mutations and concomitantly nucleos (t) ide analog resistance mutations in Turkish patients with chronic hepatitis B. International Journal of Infectious Diseases. 2010;14:e136-e41.
  31. Lavanchy D. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. Journal of clinical virology. 2005;34:S1-S3.
  32. Sheldon J, Soriano V. Hepatitis B virus escape mutants induced by antiviral therapy. Journal of antimicrobial chemotherapy. 2008;61(4):766-8.
  33. Salpini R, Colagrossi L, Bellocchi MC, Surdo M, Becker C, Alteri C, et al. Hepatitis B surface antigen genetic elements critical for immune escape correlate with hepatitis B virus reactivation upon immunosuppression. Hepatology. 2015;61(3):823-33.
  34. Pan CQ, Duan ZP, Bhamidimarri KR, Zou HB, Liang XF, Li J, et al. An algorithm for risk assessment and intervention of mother to child transmission of hepatitis B virus. Clinical gastroenterology and hepatology. 2012;10(5):452-9.
  35. Oon CJ, Chen WN, Goo KS, Goh KT. Intra-familial evidence of horizontal transmission of hepatitis B virus surface antigen mutant G145R. Journal of Infection. 2000;41(3):260-4.
  36. Torresi J. The virological and clinical significance of mutations in the overlapping envelope and polymerase genes of hepatitis B virus. Journal of clinical virology. 2002;25(2):97-106.
  37. Hsieh Y-H, Su I-J, Wang H-C, Chang W-W, Lei H-Y, Lai M-D, et al. Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage. Carcinogenesis. 2004;25(10):2023-32.
  38. Salpini R, Svicher V, Cento V, Gori C, Bertoli A, Scopelliti F, et al. Characterization of drug-resistance mutations in HBV D-genotype chronically infected patients, naive to antiviral drugs. Antiviral research. 2011;92(2):382-5.