بررسی تغییرات برخی ژن‌های مؤثر بر رگ زایی عضله قلبی متعاقب هشت هفته تمرینات استقامتی و مقاومتی موش‌های صحرایی نر ویستارچاق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مرکز تحقیقات طب ورزشی، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران

2 استادیار، مرکز تحقیقات طب ورزشی، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران (نویسنده مسئول)

3 استادیار، مرکز تحقیقات طب ورزشی، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران

چکیده

مقدمه: چاقی سبب بروز برخی بیماری­ها مانند بیماری­های قلبی­عروقی می­شود که انجام فعالیت­های ورزشی می­تواند در کاهش این عوارض دخیل باشد. هدف از پژوهش حاضر، بررسی تغییرات برخی ژن­های مؤثر بر رگ زایی عضله قلبی متعاقب هشت هفته تمرینات استقامتی و مقاومتی موش­های صحرایی نر ویستارچاق بود.
روش کار: روش پژوهش تجربی با طرح پیش‌آزمون، پس‌آزمون و گروه‌های کنترل و تجربی بود. پژوهش حاضر، 24 موش صحرایی نژاد ویستارنر چاق با سن هشت هفته و وزن 00/34±61/356 گرم، به‌صورت تصادفی به سه گروه؛ استقامتی (8سر)، مقاومتی (8سر) و کنترل (8سر) تقسیم شدند. موش­های گروه­های تجربی به مدت هشت هفته، هفته­ای پنج جلسه تمرینات استقامتی با شدت70 تا80درصد سرعت بیشینه و مقاومتی با شدت 50 تا 120 درصد وزن بدن را انجام دادند و برای اندازه­گیری بیان ژن­ از روش Real Time-PCR و جهت اندازه­گیری مقادیر پروتئین از روش وسترن بلات استفاده شد. از روش آماری تحلیل واریانس یک­طرفه و آزمون تعقیبی توکی جهت تعیین اختلاف بین گروها در سطح معنی­داری05/0≤P استفاده شد.
نتایج: داده­های این تحقیق نشان داد تمرینات استقامتی و مقاومتی سبب افزایش معنادار بیان ژن Piezo1 (001/=P)، بیان ژنYoda1 (001/=P)، و مقادیر پروتئین­های FSTL-1 (001/=P) و NFDF (001/=P)، نسبت به گروه کنترل شد اما تفاوتی بین گروه­های تجربی مشاهده نشد (055/0=P، 387/0=P، 936/0=P، 00/1=P).
نتیجه‌گیری بر اساس نتایج این پژوهش، تمرینات استقامتی و مقاومتی با ایجاد تغییرات در سطوح برخی فاکتورها در کاهش عوارض ناشی از چاق مؤثر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Changes in Certain Genes Influencing Cardiac Muscle Angiogenesis Following Eight Weeks of Endurance and Resistance Exercises in Obese Male Wistar Rats

نویسندگان [English]

  • Fariba Derakhshandehfar 1
  • Jamshid Banaei Borojeni 2
  • Saeed Keshavarz 3
  • Elham Eftekhari 3
1 PhD candidate, Sport Medicine Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 Assistant professor, Sport Medicine Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran (Corresponding Author)
3 Assistant professor, Sport Medicine Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
چکیده [English]

Introduction: Obesity leads to the occurrence of various diseases such as cardiovascular diseases, which physical exercise can mitigate. The aim of the current study was to investigate the changes in certain genes influencing cardiac muscle angiogenesis following eight weeks of endurance and resistance exercises in obese male Wistar rats.
Methods: The method of experimental research was pre-test, post-test and experimental and control groups. Twenty-four obese Wistar male rats, aged eight weeks with a weight of 356.61 ± 34.00 grams, were randomly divided into three groups: endurance (n=8), resistance (n=8), and control (n=8). The experimental groups underwent five sessions per week of endurance exercises at 70-80% maximum speed intensity and resistance exercises at 50-120% body weight intensity over an eight-week period. Real-Time PCR was used to measure gene expression, and Western blotting was employed to measure protein levels. One-tailed analysis of variance (ANOVA) and Tukey's post hoc test were used to determine significant differences between groups at a significance level of P ≤ 0.05.
Findings: The data indicated that both endurance and resistance exercises significantly increased the expression of Piezo1 gene (P = 0.001), Yoda1 gene (P = 0.001), and the levels of FSTL-1 protein (P = 0.001) and NFDF protein (P = 0.001) compared to the control group. However, no significant differences were observed between the experimental groups (P > 0.05).
Conclusion: Based on the results of this study, endurance and resistance exercises appear to be effective in modulating certain factors involved in reducing obesity-related complications.

کلیدواژه‌ها [English]

  • Endurance exercises
  • Resistance exercises
  • Piezo1
  • Yoda1
  • FSTL-1
  • NFDF
  • Obesity
  1. Ma K, Zhang Y, Zhao J, Zhou L, Li M. Endoplasmic reticulum stress: bridging inflammation and obesity-associated adipose tissue. Frontiers in Immunology. 2024;15:1381227.
  2. Varra F-N, Varras M, Varra V-K, Theodosis‑Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options. Molecular Medicine Reports. 2024;29(6):1-27.
  3. Karkempetzaki AI, Ravid K. Piezo1 and Its Function in Different Blood Cell Lineages. Cells. 2024;13(6):482.
  4. Xie M, Cao H, Qiao W, Yan G, Qian X, Zhang Y, et al. Shear stress activates the Piezo1 channel to facilitate valvular endothelium-oriented differentiation and maturation of human induced pluripotent stem cells. Acta Biomaterialia. 2024;178:181-95.
  5. Tadge T, Pattewar A, More N, Babu SS, Velyutham R, Kapusetti G. The Role of Piezo1 and Piezo2 Proteins in Tissue Engineering: A Comprehensive Review. Engineered Regeneration. 2024.
  6. Chen W, Zhang H. Elucidating the mechanism of IL-1β-Mediated Piezo1 expression regulation of chondrocyte autophagy and apoptosis via the PI3K/AKT/mTOR signaling Pathway. Tissue and Cell. 2024;86:102291.
  7. Ogino S, Yoshikawa K, Nagase T, Mikami K, Nagase M. Roles of the mechanosensitive ion channel Piezo1 in the renal podocyte injury of experimental hypertensive nephropathy. Hypertension Research. 2024;47(3):747-59.
  8. Duan X, Liu R, Xi Y, Tian Z. The mechanisms of exercise improving cardiovascular function by stimulating Piezo1 and TRP ion channels: a systemic review. Molecular and Cellular Biochemistry. 2024:1-19.
  9. Lichtenstein L, Cheng CW, Evans EL, Gaunt HJ, Bartoli F, Chuntharpursat-Bon E, et al. PIEZO1 force sensing controls global lipid homeostasis. bioRxiv. 2023:2023.07. 23.550198.
  10. Hirano K, Tsuchiya M, Shiomi A, Takabayashi S, Suzuki M, Ishikawa Y, et al. The mechanosensitive ion channel PIEZO1 promotes satellite cell function in muscle regeneration. Life Science Alliance. 2023;6(2).
  11. Fakhr Fatemi H, Rezaeian N, Karimi M. Effect of High Intensity Interval Training on Adipose Tissue Levels of Piezo1 and Insulin Resistance Index in Diabetic Rats. Journal of Animal Research (Iranian Journal of Biology). 2023;36(4):309-21.
  12. Beech DJ. Endothelial Piezo1 channels as sensors of exercise. The Journal of Physiology. 2018;596(6):979-84.
  13. Rode B, Shi J, Endesh N, Drinkhill MJ, Webster PJ, Lotteau SJ, et al. Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nature communications. 2017;8(1):350.
  14. Syeda R, Xu J, Dubin AE, Coste B, Mathur J, Huynh T, et al. Chemical activation of the mechanotransduction channel Piezo1. elife. 2015;4:e07369.
  15. Mirzoev T, Sergeeva K, Tyganov S, Kalashnikov V, Shenkman B. Analysis of the Role of Piezo1 Channels in Mechano-Anabolic Coupling in Rat Soleus Muscle. Biologičeskie membrany. 2023;40(5):362-9.
  16. Malko P, Jia X, Wood I, Jiang LH. Piezo1 channel‐mediated C a2+ signaling inhibits lipopolysaccharide‐induced activation of the NF‐κB inflammatory signaling pathway and generation of TNF‐α and IL‐6 in microglial cells. Glia. 2023;71(4):848-65.
  17. Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Developmental Dynamics. 2024;253(1):28-58.
  18. Sharma B, Sehrawat H, Gupta V. Advances in regenerative medicines based on mesenchymal stem cell secretome. Computational Biology for Stem Cell Research: Elsevier; 2024. p. 175-85.
  19. Celik E, Akbaba G, Edgunlu T, Akbaba E, Pirincci F, Cinar N, editors. Serum Follistatin-Like-1 (FSTL-1) Levels in Gestational Diabetes and The Role of FSTL-1 Gene Polymorphism in the Development of Gestational Diabetes Mellitus. Endocrine Abstracts; 2023: Bioscientifica.
  20. Gliwińska A, Czubilińska-Łada J, Więckiewicz G, Świętochowska E, Badeński A, Dworak M, et al. The role of brain-derived neurotrophic factor (BDNF) in diagnosis and treatment of epilepsy, depression, schizophrenia, anorexia nervosa and Alzheimer’s disease as highly drug-resistant diseases: a narrative review. Brain Sciences. 2023;13(2):163.
  21. Ozaki Y, Ohashi K, Otaka N, Ogawa H, Kawanishi H, Takikawa T, et al. Neuron-derived neurotrophic factor protects against dexamethasone-induced skeletal muscle atrophy. Biochemical and Biophysical Research Communications. 2022;593:5-12.
  22. Delgado-Peraza F, Nogueras-Ortiz C, Simonsen AH, Knight DLD, Yao PJ, Goetzl EJ, et al. Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alzheimer’s disease. Alzheimer's research & therapy. 2023;15(1):156.
  23. Iu ECY, Chan CB. Is brain-derived neurotrophic factor a metabolic hormone in peripheral tissues? Biology. 2022;11(7):1063.
  24. Joki Y, Ohashi K, Yuasa D, Shibata R, Kataoka Y, Kambara T, et al. Neuron-derived neurotrophic factor ameliorates adverse cardiac remodeling after experimental myocardial infarction. Circulation: Heart Failure. 2015;8(2):342-51.
  25. Ji M, Cho C, Lee S. Acute effect of exercise intensity on circulating FGF-21, FSTL-1, cathepsin B, and BDNF in young men. Journal of Exercise Science & Fitness. 2024;22(1):51-8.
  26. Damay VA, Setiawan S, Lesmana R, Akbar MR, Lukito AA. Effects of moderate intensity aerobic exercise to FSTL-1 regulation in atherosclerosis: a systematic review. International Journal of Angiology. 2023;32(01):001-10.
  27. Leandro CG, Levada AC, Hirabara SM, MANHAS-DE-CASTRO R, De-Castro CB, Curi R, et al. Aprogram of moderate physical training for wistar rats based on maximal oxygen consumption. The Journal of Strength & Conditioning Research. 2007;21(3):751-6.
  28. Akbari M, Rashid Lamir A, Bijeh N, Hosseini Kakhk A. The Effect of Eight-Week Endurance, Resistance and High-Intensity Interval Training on SREBP-1 and 12.13-diHome Gene Expression in Male Obese Vistar Rats. Journal of Sport Biosciences. 2023;15(1):89-104.
  29. Fakhr Fatemi H, Rezaeian N, Karimi M. Effect of High Intensity Interval Training on Adipose Tissue Levels of Piezo1 and Insulin Resistance Index in Diabetic Rats. Journal of Animal Research (Iranian Journal of Biology). 2023.
  30. Chang X, Xu S, Zhang H. Regulation of bone health through physical exercise: Mechanisms and types. Frontiers in Endocrinology. 2022;13:1029475.
  31. Schröder A, Neher K, Krenmayr B, Paddenberg E, Spanier G, Proff P, et al. Impact of PIEZO1‐channel on inflammation and osteoclastogenesis mediated via periodontal ligament fibroblasts during mechanical loading. European Journal of Oral Sciences. 2023;131(1):e12913.
  32. Yang Q, Li X, Xing Y, Chen Y. Piezo1, a novel therapeutic target to treat pulmonary arterial hypertension. Frontiers in Physiology. 2023;14:88.
  33. Hong R, Yang D, Jing Y, Chen S, Tian H, Yang Y. PIEZO1-Related Physiological and Pathological Processes in CNS: Focus on the Gliomas. Cancers. 2023;15(3):883.
  34. Tang H, Zeng R, He E, Zhang I, Ding C, Zhang A. Piezo-Type Mechanosensitive Ion Channel Component 1 (Piezo1): A Promising Therapeutic Target and Its Modulators: Miniperspective. Journal of Medicinal Chemistry. 2022;65(9):6441-53.
  35. Cheng H, Zhong W, Wang L, Zhang Q, Ma X, Wang Y, et al. Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches. Biomedicine & Pharmacotherapy. 2023;158:114198.
  36. Liu S, Pan X, Cheng W, Deng B, He Y, Zhang L, et al. Tubeimoside I antagonizes Yoda1-evoked Piezo1 channel activation. Frontiers in Pharmacology. 2020;11:768.
  37. Ishizawa R, Hotta N, Kim HK, Iwamoto GA, Vongpatanasin W, Mitchell JH, et al. Yoda1-induced Piezo1 Channel Activity In Group Iv Muscle Afferents Of Type 2 Diabetic Rats: 1591. Medicine & Science in Sports & Exercise. 2022;54(9S):379.
  38. Zhang Y, Su S-a, Li W, Ma Y, Shen J, Wang Y, et al. Piezo1-mediated mechanotransduction promotes cardiac hypertrophy by impairing calcium homeostasis to activate calpain/calcineurin signaling. Hypertension. 2021;78(3):647-60.
  39. Inoue K, Fujie S, Horii N, Yamazaki H, Uchida M, Iemitsu M. Aerobic exercise training‐induced follistatin‐like 1 secretion in the skeletal muscle is related to arterial stiffness via arterial NO production in obese rats. Physiological Reports. 2022;10(10):e15300.
  40. Kon M, Ebi Y, Nakagaki K. Effects of acute sprint interval exercise on follistatin-like 1 and apelin secretions. Archives of physiology and biochemistry. 2021;127(3):223-7.
  41. Xi Y, Hao M, Liang Q, Li Y, Gong D-W, Tian Z. Dynamic resistance exercise increases skeletal muscle-derived FSTL1 inducing cardiac angiogenesis via DIP2A–Smad2/3 in rats following myocardial infarction. Journal of Sport and Health Science. 2021;10(5):594-603.
  42. Görgens SW, Raschke S, Holven KB, Jensen J, Eckardt K, Eckel J. Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells. Archives of physiology and biochemistry. 2013;119(2):75-80.
  43. Norheim F, Raastad T, Thiede B, Rustan AC, Drevon CA, Haugen F. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. American Journal of Physiology-Endocrinology and Metabolism. 2011;301(5):E1013-E21.
  44. van Meijel RL, Vliex LM, Hartwig S, Lehr S, Al-Hasani H, Blaak EE, et al. The impact of mild hypoxia exposure on myokine secretion in human obesity. International Journal of Obesity. 2023;47(6):520-7.
  45. Pinckard K. Multi-Faceted Mechanisms of Exercise to Improve Metabolic and Cardiac Health: The Ohio State University; 2021.
  46. Arabzadeh E, Samadian Z, Tofighi A, Tolouei Azar J. Alteration of follistatin-like 1, neuron-derived neurotrophic factor, and vascular endothelial growth factor in diabetic cardiac muscle after moderate-intensity aerobic exercise with insulin. Sport sciences for health. 2020;16:491-9.
  47. Toloi Azarjavad, Tofiqi Asghar *, Arabzadeh Ahsan. (2018). The effect of six weeks of endurance training on FSTL-1, NDNF, VEGF proteins and changes in the heart muscle of healthy male rats. Sports Physiology. 169-186.
  48. Ohashi K, Enomoto T, Joki Y, Shibata R, Ogura Y, Kataoka Y, et al. Neuron-derived neurotrophic factor functions as a novel modulator that enhances endothelial cell function and revascularization processes. Journal of Biological Chemistry. 2014;289(20):14132-44.
  49. Sethi S, Madden B, Moura MC, Singh RD, Nasr SH, Hou J, et al. Membranous nephropathy in syphilis is associated with neuron-derived neurotrophic factor. Journal of the American Society of Nephrology. 2023;34(3):374-84.
  50. Hong H, Su J, Huang C, Lu X, Cui Z. Comprehensive insights into the function and molecular and pharmacological regulation of neuron-derived orphan receptor 1, an orphan receptor. Frontiers in Pharmacology. 2022;13:981490.