بررسی تغییرات نوکلئوتیدی ژن LMO1 به عنوان یک تنظیم‌کننده مثبت نسخه‌برداری در بیماران مبتلا به تومورهای مغزی از نوع گلیوبلاستوما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد ژنتیک، گروه زیست شناسی، دانشگاه یزد، یزد، ایران

2 دانشیار ژنتیک مولکولی، گروه زیست شناسی، دانشگاه یزد، یزد، ایران، (نویسنده مسئول)

3 دانشیار ژنتیک مولکولی، گروه زیست شناسی، دانشگاه یزد، یزد، ایران

4 متخصص بیماری های مغز و اعصاب (نورولوژی)، گروه جراحی مغز و اعصاب، دانشکده پزشکی، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران

چکیده

مقدمه
گلیوبلاستوما یکی از بدخیم‌ترین تومورهای مغزی است که به‌عنوان تومورهای اولیه اپیتلیال عصبی نیز شناخته می‌شود. تومورهای بدخیم گلیوبلاستوما در حدود 40%-20 موارد از تومورهای مغزی را شامل می‌شوند. ژن LMO1 در موقعیت 11P15.4 قرار دارد و به‌عنوان انکوژن در برخی سرطان‌ها معرفی می‌شود. این مطالعه، برای اولین‌بار در ایران، جهت شناسایی و بررسی ارتباط جهش‌های ژن LMO1 با گلیوبلاستوما ، انجام شده است.
روش کار
در این تحقیق، از تکنیک Touchdown PCR و روش تعیین‌توالی DNA، در 35 نمونه‌ی خون افراد مبتلا به گلیوبلاستومای مولتی‌فرم و 40 نمونه شاهد استفاده ‌شد. همچنین آنالیزهای بیوانفورماتیکی، برای بررسی اثر پاتوژنسیتی تغییرات نوکلئوتیدی در این ژن انجام شد.
نتایج
طی این مطالعه، چهار جهش نقطه‌ای شناسایی شد که دو تا از جهش‌های جدید، بدمعنی بوده و منجر به تغییر اسیدآمینه در یکی از دامین‌های مهم پروتئین می‌شدند (p.M135K و p.N148H) که نشان‌دهنده اهمیت بالقوه بیماریزایی آنها است. نتایج مطالعه ما در چندین پایگاه داده بیوانفورماتیکی، پیش‌بینی کرد که هر دو این جهش‌ها بر عملکرد پروتئین اثرگذار هستند، بگونه‌ای که می‌توانند این دامین را مختل کرده و عملکرد آن را دچار نقص کنند. همچنین، یک تغییر نوکلئوتیدی هم در ناحیه 3'UTR این ژن مشاهده شد (c.*74A>G) که در جایگاه اتصال دو miRNA تنظیمی قرار دارد و پیش‌بینی می‌شود بتواند اتصال این miRNAها به توالی هدف را مختل کند.
نتیجه‌گیری
این یافته‌ها، پیش‌بینی می‌کنند که هرگونه جهش در دامین‌های حساسLIM در ژنLMO1 به طور قابل‌توجهی با بیماریزایی گلیوبلاستومای مولتی‌فرم مرتبط هستند و به احتمال زیاد بر عملکرد این کوفاکتور نسخه‌برداری تاثیر بسزایی دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating Nucleotide Changes of LMO1 Gene as a Positive Regulator of Transcription in Patients with Glioblastoma Brain Tumors

نویسندگان [English]

  • Hadis Mohammadi 1
  • Mohammad Mehdi Heidari 2
  • Mehri Khatami 3
  • Ehsan Ziaeii 4
1 Master's student in Genetics, Department of Biology, Yazd University, Yazd, Iran
2 Associate Professor of Molecular Genetics, Department of Biology, Yazd University, Yazd, Iran, (corresponding author)
3 Associate Professor of Molecular Genetics, Department of Biology, Yazd University, Yazd, Iran
4 Neurology specialist, Department of Neurosurgery, Faculty of Medicine, Shahid Sadougi University of Medical Sciences, Yazd, Iran
چکیده [English]

Introduction
Glioblastoma is one of the most malignant brain tumors, which is also known as primary neuroepithelial tumors. Glioblastoma malignant tumors include 20-40% of brain tumors. The LMO1 gene is located at position 11P15.4 and is introduced as an oncogene in some cancers. This study was conducted for the first time in Iran to identify and investigate the relationship between LMO1 gene mutations and glioblastoma.
method
In this research, the Touchdown PCR technique and DNA sequencing method were used in 35 blood samples of people with glioblastoma multiforme and 40 control samples. Bioinformatics analyses were also performed to investigate the pathogenic effect of nucleotide changes in this gene.
Results
In this study, four point mutations were identified, of which two of the new mutations were misense and led to amino acid changes in one of the important domains of the protein (p.M135K and p.N148H), which indicates their potential pathogenicity. Our results of bioinformatics databases predicted that both of these mutations affect protein function, such that they can disrupt this domain and impair its function. Also, a nucleotide change was observed in the 3'UTR region of this gene (c.*74A>G), which is located at the binding site of two regulatory miRNAs and is expected to disrupt the binding of these miRNAs to the target sequence.
Conclusion
These findings predict that any mutations in the LIM-sensitive domains in the LMO1 gene are significantly related to the pathogenesis of glioblastoma and most likely have a significant impact on the function of this transcriptional cofactor.

کلیدواژه‌ها [English]

  • Brain tumors
  • sequencing
  • Glioblastoma multiform
  • LMO1 gene
  • Touchdown PCR
  1. Wang Y, Wang Z, Hua C, Xu Y, Li Y, Zhao G. Primary Malignant Brain Tumors following Systemic Malignancies: A Population-Based Analysis. Neuroepidemiology. 2022; 56 (6): 452-459.

    1. Lu QR, Qian L. Developmental origins and oncogenic pathways in malignant brain tumors. 2019; 8 (4): e342.
    2. Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G, Fuchs HE, Waite KA, Jemal A, Siegel RL, Barnholtz-Sloan JS. Brain and other central nervous system tumor statistics. CA: A Cancer Journal for Clinicians. 2021; 71 (5): 381-406.
    3. Banan R, Hartmann C. The new WHO classification of brain tumors-what neurosurgeons need to know. Acta neurochirurgica. 2017; 159 (3): 403-418.
    4. McKinney PA. Brain tumours: incidence, survival, and aetiology. Journal of Neurology, Neurosurgery & Psychiatry. 2004; 75 (suppl 2): ii12-ii17.
    5. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee Sh U. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pacific journal of cancer prevention : APJCP. 2017; 18 (1): 3-9.
    6. Kanzawa T, Ito H, Kondo Y, Kondo S. Current and Future Gene Therapy for Malignant Gliomas. Journal of biomedicine & biotechnology. 2003; 2003 (1): 25-34.
    7. Owlia F, Heidari MM, Khatami M, Ziaei E, Broomand MA. Studying the Pathogenic Effect of New Nucleotide Changes in the Promoter Region of the TERT Gene in Patients with Glioblastoma Brain Tumor. Journal of Shahid Sadoughi University of Medical Sciences. 2024.
    8. Gao L, Wu J, Wang H, Yang Y, Zheng Z, Ni B, Wang X, Peng Y, Li Y. LMO1 Plays an Oncogenic Role in Human Glioma Associated With NF-kB Pathway. Frontiers in oncology. 2022; 12: 770299.
    9. Lin H, Chen H, Lin A, Liu X, Huang X, Zhou J, Yuan L, Zhuo Z. Associations between LMO1 gene polymorphisms and central nervous system tumor susceptibility. Pediatric investigation. 2021; 5 (4): 281-287.
    10. Lu J, Chu P, Wang H, Jin Y, Han S, Han W, Tai J, Guo Y, Ni X. Candidate Gene Association Analysis of Neuroblastoma in Chinese Children Strengthens the Role of LMO1. PloS one. 2015; 10 (6): e0127856.
    11. Zhuang H-H, Qu Q, Teng X-Q, Dai Y-H, Qu J. Superenhancers as master gene regulators and novel therapeutic targets in brain tumors. Experimental & Molecular Medicine. 2023; 55 (2): 290-303.
    12. He L, Zhu J, Han F, Tang Y, Zhou C, Dai J, Wang Y, Zhou H, He J, Wu H. LMO1 Gene Polymorphisms Reduce Neuroblastoma Risk in Eastern Chinese Children: A Three-Center Case-Control Study. Frontiers in oncology. 2018; 8: 468.
    13. He J, Zhang X, Zhang J, Zhang R, Yang T, Zhu J, Xia H, Zou Y. LMO1 super-enhancer polymorphism rs2168101 G>T correlates with decreased neuroblastoma risk in Chinese children. Journal of Cancer. 2018; 9 (9): 1592-1597.
    14. Zhao GF, Du LQ, Zhang L, Jia YC. LIM domain only 1: an oncogenic transcription cofactor contributing to the tumorigenesis of multiple cancer types. Chinese medical journal. 2021; 134 (9): 1017-1030.
    15. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA: A Cancer Journal for Clinicians. 2020; 70 (4): 299-312.
    16. Wang L, Tan TK, Durbin AD, Zimmerman MW, Abraham BJ, Tan SH, Ngoc PCT, Weichert-Leahey N, Akahane K, Lawton LN, Rokita JL, Maris JM, Young RA, Look AT, Sanda T. ASCL1 is a MYCN- and LMO1-dependent member of the adrenergic neuroblastoma core regulatory circuitry. Nature Communications. 2019; 10 (1): 5622.
    17. Weichert-Leahey N, Shi H, Tao T, Oldridge DA, Durbin AD, Abraham BJ, Zimmerman MW, Zhu S, Wood AC, Reyon D, Joung JK, Young RA, Diskin SJ, Maris JM, Look AT. Genetic predisposition to neuroblastoma results from a regulatory polymorphism that promotes the adrenergic cell state. The Journal of Clinical Investigation. 2023; 133 (10):
    18. Matthews J, Lester K, Joseph S, Curtis D. LIM-domain-only proteins in cancer. Nature reviews Cancer. 2013; 13.
    19. Tremblay M, Tremblay CS, Herblot S, Aplan PD, Hébert J, Perreault C, Hoang T. Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Genes & development. 2010; 24 (11): 1093-1105.
    20. Sun Y, Ma GJ, Hu XJ, Yin XY, Peng YH. Clinical significance of LMO1 in gastric cancer tissue and its association with apoptosis of cancer cells. Oncol Lett. 2017; 14 (6): 6511-6518.
    21. Du L, Zhao Z, Suraokar M, Shelton SS, Ma X, Hsiao TH, Minna JD, Wistuba I, Pertsemlidis A. LMO1 functions as an oncogene by regulating TTK expression and correlates with neuroendocrine differentiation of lung cancer. Oncotarget. 2018; 9 (51): 29601-29618.
    22. Gu H, Liu T, Cai X, Tong Y, Li Y, Wang C, Li F. Upregulated LMO1 in prostate cancer acts as a novel coactivator of the androgen receptor Corrigendum in /10.3892/ijo.2016.3344. Int J Oncol. 2015; 47 (6): 2181-2187.
    23. Oram SH, Thoms J, Sive JI, Calero-Nieto FJ, Kinston SJ, Schütte J, Knezevic K, Lock RB, Pimanda JE, Göttgens B. Bivalent promoter marks and a latent enhancer may prime the leukaemia oncogene LMO1 for ectopic expression in T-cell leukaemia. Leukemia. 2013; 27 (6): 1348-1357.
    24. Sang M, Ma L, Sang M, Zhou X, Gao W, Geng C. LIM-domain-only proteins: multifunctional nuclear transcription coregulators that interacts with diverse proteins. Molecular biology reports. 2014; 41 (2): 1067-1073.
    25. Li Z, Abraham BJ, Berezovskaya A, Farah N, Liu Y, Leon T, Fielding A, Tan SH, Sanda T, Weintraub AS, Li B, Shen S, Zhang J, Mansour MR, Young RA, Look AT. APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL. Leukemia. 2017; 31 (10): 2057-2064.
    26. Zhang Y, Yang J, Wang J, Guo H, Jing N. LMO1 is a novel oncogene in lung cancer, and its overexpression is a new predictive marker for anti-EGFR therapy. Medical oncology (Northwood, London, England). 2014; 31 (8): 99.
    27. Beuten J, Gelfond JA, Piwkham D, Pollock BH, Winick NJ, Collier AB, 3rd, Tomlinson GE. Candidate gene association analysis of acute lymphoblastic leukemia identifies new susceptibility locus at 11p15 (LMO1). Carcinogenesis. 2011; 32 (9): 1349-1353.
    28. Oldridge DA, Wood AC, Weichert-Leahey N, Crimmins I, Sussman R, Winter C, McDaniel LD, Diamond M, Hart LS, Zhu S, Durbin AD, Abraham BJ, Anders L, Tian L, Zhang S, Wei JS, Khan J, Bramlett K, Rahman N, Capasso M, Iolascon A, Gerhard DS, Guidry Auvil JM, Young RA, Hakonarson H, Diskin SJ, Thomas Look A, Maris JM. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature. 2015; 528 (7582): 418-421.
    29. Li G, Jia W, Yin Z, Zhu J, Liu G, Xia H, He J, Fu W. LMO1 Super-Enhancer rs2168101 G>T Polymorphism Reduces Wilms Tumor Risk. Journal of Cancer. 2019; 10 (8): 1808-1813.
    30. Naji P, Heidari MM, Khatami M, Zare-Zardini H, Chamani R. MicroRNAs as a New Molecular Biomarker for Diagnosis and Prognosis of T-cell Acute Lymphoblastic Leukemia (T-ALL): A Systematic Review. Iranian journal of Pediatric Hematology and Oncology. 2020; 10 (3): 184-199.
    31. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduction and Targeted Therapy. 2016; 1 (1): 15004.
    32. Bach I. The LIM domain: regulation by association. Mechanisms of Development. 2000; 91 (1): 5-17.