ارتباط بین مصرف مس و منیزیم با بیماری های قلبی عروقی: مقاله مروری

نوع مقاله : مقاله مروری

نویسندگان

1 مرکز تحقیقات سندرم متابولیک، دانشگاه علوم پزشکی مشهد، مشهد، ایران; مرکز بین المللی یونسکو علوم پایه مرتبط با سلامت و تغذیه انسان، دانشگاه علوم پزشکی مشهد، مشهد، ایران.

2 مرکز تحقیقات سندرم متابولیک، دانشگاه علوم پزشکی مشهد، مشهد، ایران; گروه ژنتیک پزشکی و پزشکی مولکولی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران; مرکز تحقیقات جراحی آندوسکوپی و کم تهاجمی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

چکیده

بیماریهای قلبی-عروقی (CVD) یکی از علل اصلی مرگ و میر هستند. مطالعات متعددی بر ارتباط بین مصرف مس و CVD در مطالعات اپیدمیولوژیک تمرکز کرده‌اند. با این حال، اثرات مس خوراکی در CVD همچنان مورد بحث است. تعدادی از مطالعات روی مدل حیوانی مشاهده کردند که مصرف مس بر اساس مسیرهای مولکولی ارتباط قوی با آتروژنز دارد. با این حال سایر مطالعات این هم‌بستگی را تایید نکرده‌اند. کارآزمایی‌های بالینی ارتباطی بین مصرف مس با CVD نشان نداده‌اند و مقدار مصرف بهینه مس برای کاهش خطر ابتلا به CVD ها نامشخص است. منیزیم (Mg) عنصر حیاتی دیگری است که در فرآیندهای مختلف زیستی نقش اساسی دارد. چندین کارآزمایی تصادفی‌شده شاهد‌دار (RCT) و فراتحلیل ها گزارش کرده‌اند که افرادی که مصرف بالای منیزیم دارند، کمتر در معرض خطر برای ابتلا به CVD هستند. بر اساس مشاهدات، افزایش مصرف منیزیم خطر ابتلا به عوامل خطر نارسایی قلب (CD) و CVD را کاهش میدهد. این مطالعه همچنین نشان داد که افراد با مصرف بالای منیزیم نیز کمتر در معرض خطر ابتلا به فشار خون و بیماری قند هستند. هدف این بررسی مرور یافته‌های اخیر در مورد ارتباط بین مصرف مس و منیزیم و بیماری‌های قلبی عروقی است. علاوه بر این، مطالعات RCT دقیق تری برای درک کامل مکانیسم های اساسی و درگیر در اثرگذاری منیزیم بر سلامت قلب و عروق مورد نیاز است.

کلیدواژه‌ها


عنوان مقاله [English]

Association between Copper and Magnesium Intake with Cardiovascular Disease: A Narrative Review

نویسندگان [English]

  • Sara Saffar Soflaei 1
  • Maryam Saberi-Karimian 2
1 MD-PhD, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; saberiInternational UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran,
2 PhD, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
چکیده [English]

Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality. Various studies have focused on the association between copper intake and CVD in epidemiological studies; however, the effects of dietary copper in CVD remains controversial. Some animal model studies have observed a strong association between copper intake and atherogenesis based on molecular pathways, while other studies were unable to confirm this correlation. Clinical trials have not demonstrated a clear link between copper intake and CVD, and the optimal copper intake to reduce the risk of developing CVDs remain unclear. Magnesium is another crucial element that plays essential roles in various biological processes. Several randomized controlled trials (RCTs) and meta-analyses have reported that individuals with high magnesium intake have a lower risk of developing CVD. It has been observed that increased magnesium intake reduces the risk of CVD risk factors and CVD. The study also indicated that individuals with high magnesium intake have a lower risk of developing hypertension and diabetes. The purpose of this review is to summarize recent findings on the link between copper and magnesium intake and CVD. Furthermore, more thorough RCTs are required to fully understand the underlying mechanisms involved in the effect of magnesium on cardiovascular health.

کلیدواژه‌ها [English]

  • Copper
  • Magnesium
  • Cardiovascular disease
  1. Shockey, T.M., A.L. Sussell, and E.C. Odom, Cardiovascular Health Status by Occupational Group - 21 States, 2013. MMWR Morb Mortal Wkly Rep, 2016. 65(31): p. 793-8.

    1. Farley A, M.E., Hendry C, The cardiovascular system. Nurs Stand, 2012. 27(9): p. 9-35.
    2. Masaebi, F., et al., Trend analysis of disability adjusted life years due to cardiovascular diseases: results from the global burden of disease study 2019. BMC Public Health, 2021. 21(1): p. 1268.
    3. Roth, G.A., et al., Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol, 2020. 76(25): p. 2982-3021.
    4. Silva, C.S.e., et al. Trace Minerals in Human Health: Iron, Zinc, Copper, Manganese and Fluorine. 2019.
    5. Aliasgharpour, M. and M. Rahnamaye Farzami, Trace Elements in Human Nutrition: A Review. International Journal of Medical Investigation, 2013. 2(3): p. 0-0.
    6. Ugarte, M., et al., Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol, 2013. 58(6): p. 585-609.
    7. Rydén, L., Ceruloplasmin. Copper proteins and copper enzymes. 2018: CRC Press.
    8. Gami, A.S., et al., Metabolic Syndrome and Risk of Incident Cardiovascular Events and Death: A Systematic Review and Meta-Analysis of Longitudinal Studies. Journal of the American College of Cardiology, 2007. 49(4): p. 403-414.
    9. Shils, M., Shike, M., Modern nutrition in health and disease. 2006: Lippincott Williams & Wilkins.
    10. de Baaij, J.H., J.G. Hoenderop, and R.J. Bindels, Magnesium in man: implications for health and disease. Physiol Rev, 2015. 95(1): p. 1-46.
    11. Al Alawi, A.M., S.W. Majoni, and H. Falhammar, Magnesium and Human Health: Perspectives and Research Directions. Int J Endocrinol, 2018. 2018: p. 9041694.
    12. Ghasemi, A., et al., Pediatric reference values for serum magnesium levels in Iranian subjects. Scand J Clin Lab Invest, 2010. 70(6): p. 415-20.
    13. Syedmoradi, L., et al., Prevalence of hypo- and hypermagnesemia in an Iranian urban population. Ann Hum Biol, 2011. 38(2): p. 150-5.
    14. Schimatschek, H.F. and R. Rempis, Prevalence of hypomagnesemia in an unselected German population of 16,000 individuals. Magnes Res, 2001. 14(4): p. 283-90.
    15. Nielsen, F.H., Effects of magnesium depletion on inflammation in chronic disease. Curr Opin Clin Nutr Metab Care, 2014. 17(6): p. 525-30.
    16. Nielsen, F.H., Magnesium, inflammation, and obesity in chronic disease. Nutr Rev, 2010. 68(6): p. 333-40.
    17. Krishnamurthy, P., Antioxidant Enzymes and Human Health. 2012.
    18. Al-Bayati, M.A., D.A. Jamil, and H.A. Al-Aubaidy, Cardiovascular effects of copper deficiency on activity of superoxide dismutase in diabetic nephropathy. N Am J Med Sci, 2015. 7(2): p. 41-6.
    19. Liu, Y. and J. Miao, An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients, 2022. 14(3).
    20. DiNicolantonio, J.J., D. Mangan, and J.H. O'Keefe, Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart, 2018. 5(2): p. e000784.
    21. Bost, M., et al., Dietary copper and human health: Current evidence and unresolved issues. J Trace Elem Med Biol, 2016. 35: p. 107-15.
    22. Morrell, A., et al., The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life, 2017. 69(4): p. 263-270.
    23. Osredkar, J., Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. Journal of Clinical Toxicology, 2011. s3.
    24. Choi, S., X. Liu, and Z. Pan, Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin, 2018. 39(7): p. 1120-1132.
    25. Bjørklund, G., et al., Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules, 2022. 27(19).
    26. Zaric, B.L., et al., Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Front Immunol, 2020. 11: p. 551758.
    27. Ragni, M., et al., Dietary essential amino acids for the treatment of heart failure with reduced ejection fraction. Cardiovasc Res, 2023. 119(4): p. 982-997.
    28. Toscano, C.M., et al., Copper exposure for 30 days at a daily dose twice the recommended increases blood pressure and cardiac contractility. Life Sci, 2022. 300: p. 120579.
    29. Isiozor, N.M., et al., Serum copper and the risk of cardiovascular disease death in Finnish men. Nutr Metab Cardiovasc Dis, 2023. 33(1): p. 151-157.
    30. Kunutsor, S.K., et al., Serum copper-to-zinc ratio is associated with heart failure and improves risk prediction in middle-aged and older Caucasian men: A prospective study. Nutr Metab Cardiovasc Dis, 2022. 32(8): p. 1924-1935.
    31. Cabral, M., et al., Trace element profile and incidence of type 2 diabetes, cardiovascular disease and colorectal cancer: results from the EPIC-Potsdam cohort study. Eur J Nutr, 2021. 60(6): p. 3267-3278.
    32. Xiao, Y., et al., Circulating Multiple Metals and Incident Stroke in Chinese Adults. Stroke, 2019. 50(7): p. 1661-1668.
    33. Dziedzic, E.A., et al., Investigation on the Association of Copper and Copper-to-Zinc-Ratio in Hair with Acute Coronary Syndrome Occurrence and Its Risk Factors. Nutrients, 2022. 14(19).
    34. Jäger, S., et al., Blood copper and risk of cardiometabolic diseases: a Mendelian randomization study. Hum Mol Genet, 2022. 31(5): p. 783-791.
    35. Grammer, T.B., et al., Copper, ceruloplasmin, and long-term cardiovascular and total mortality (the Ludwigshafen Risk and Cardiovascular Health Study). Free Radic Res, 2014. 48(6): p. 706-15.
    36. Kerkadi, A., et al., The Association between Zinc and Copper Circulating Levels and Cardiometabolic Risk Factors in Adults: A Study of Qatar Biobank Data. Nutrients, 2021. 13(8).
    37. Kunutsor, S.K., R.S. Dey, and J.A. Laukkanen, Circulating Serum Copper Is Associated with Atherosclerotic Cardiovascular Disease, but Not Venous Thromboembolism: A Prospective Cohort Study. Pulse (Basel), 2021. 9(3-4): p. 109-115.
    38. de Almeida, A.P., et al., Branched-Chain amino acids intake is negatively related to body adiposity in individuals at cardiometabolic risk. Revista de Nutrição, 2023. 33.
    39. Darroudi, S., et al., Association Between Hypertension in Healthy Participants and Zinc and Copper Status: a Population-Based Study. Biol Trace Elem Res, 2019. 190(1): p. 38-44.
    40. Saberi-Karimian, M., et al., Effects of Saffron on Serum Zinc, Copper and Superoxide Dismutase in Patients with Metabolic Syndrome: A Randomized Double-Blind Clinical Trial. Herbal Medicines Journal (Herb Med J), 2021. 6(2): p. 43-49.
    41. Saberi-Karimian, M., et al., Curcumin's effect on serum zinc, copper and magnesium levels in obese individuals. Avicenna J Phytomed, 2023. 13(3): p. 223-230.
    42. Girelli D, O.O., Bassi A, Azzini M, Friso S, Russo C, et al, Relationships between Serum Copper Concentration and Cardiovascular Risk Factors in Normal Subjects. Therapeutic Uses of Trace Elements, 1996: p. 385-9.
    43. Arnaud, J., et al., Gender differences in copper, zinc and selenium status in diabetic-free metabolic syndrome European population - the IMMIDIET study. Nutr Metab Cardiovasc Dis, 2012. 22(6): p. 517-24.
    44. Michos, C., et al., Changes in copper and zinc plasma concentrations during the normal menstrual cycle in women. Gynecol Endocrinol, 2010. 26(4): p. 250-5.
    45. Lee, J.K., J.H. Ha, and J.F. Collins, Dietary Iron Intake in Excess of Requirements Impairs Intestinal Copper Absorption in Sprague Dawley Rat Dams, Causing Copper Deficiency in Suckling Pups. Biomedicines, 2021. 9(4).
    46. Doguer, C., J.H. Ha, and J.F. Collins, Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol, 2018. 8(4): p. 1433-1461.
    47. Adebamowo, S.N., et al., Association between intakes of magnesium, potassium, and calcium and risk of stroke: 2 cohorts of US women and updated meta-analyses. Am J Clin Nutr, 2015. 101(6): p. 1269-77.
    48. Nie, Z.L., et al., Magnesium intake and incidence of stroke: meta-analysis of cohort studies. Nutr Metab Cardiovasc Dis, 2013. 23(3): p. 169-76.
    49. Larsson, S.C., N. Orsini, and A. Wolk, Dietary magnesium intake and risk of stroke: a meta-analysis of prospective studies. Am J Clin Nutr, 2012. 95(2): p. 362-6.
    50. Fang, X., et al., Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose-response meta-analysis of prospective cohort studies. BMC Med, 2016. 14(1): p. 210.
    51. Kokubo, Y., et al., Dietary magnesium intake and risk of incident coronary heart disease in men: A prospective cohort study. Clin Nutr, 2018. 37(5): p. 1602-1608.
    52. Dai, Q., et al., Modifying effect of calcium/magnesium intake ratio and mortality: a population-based cohort study. BMJ Open, 2013. 3(2).
    53. Song, Y., et al., Dietary magnesium intake and risk of cardiovascular disease among women. Am J Cardiol, 2005. 96(8): p. 1135-41.
    54. Abbott, R.D., et al., Dietary magnesium intake and the future risk of coronary heart disease (The Honolulu Heart Program). American Journal of Cardiology, 2003. 92(6): p. 665-669.
    55. Liao, F., A.R. Folsom, and F.L. Brancati, Is low magnesium concentration a risk factor for coronary heart disease? The Atherosclerosis Risk in Communities (ARIC) Study. American Heart Journal, 1998. 136(3): p. 480-490.
    56. Chiuve, S.E., et al., Dietary and plasma magnesium and risk of coronary heart disease among women. J Am Heart Assoc, 2013. 2(2): p. e000114.
    57. Zhang, W., et al., Associations of dietary magnesium intake with mortality from cardiovascular disease: the JACC study. Atherosclerosis, 2012. 221(2): p. 587-95.
    58. Taveira, T.H., et al., Relation of Magnesium Intake With Cardiac Function and Heart Failure Hospitalizations in Black Adults. Circulation: Heart Failure, 2016. 9(4): p. e002698.
    59. Misialek, J.R., et al., Serum and dietary magnesium and incidence of atrial fibrillation in whites and in African Americans--Atherosclerosis Risk in Communities (ARIC) study. Circ J, 2013. 77(2): p. 323-9.
    60. Nielsen, F.H., et al., Dietary magnesium deficiency induces heart rhythm changes, impairs glucose tolerance, and decreases serum cholesterol in post menopausal women. J Am Coll Nutr, 2007. 26(2): p. 121-32.
    61. Chiuve, S.E., et al., Plasma and dietary magnesium and risk of sudden cardiac death in women. Am J Clin Nutr, 2011. 93(2): p. 253-60.
    62. Levitan, E.B., et al., Calcium, magnesium and potassium intake and mortality in women with heart failure: the Women's Health Initiative. Br J Nutr, 2013. 110(1): p. 179-85.
    63. Deng, X., et al., Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med, 2013. 11: p. 187.
    64. Guasch-Ferré, M., et al., Dietary magnesium intake is inversely associated with mortality in adults at high cardiovascular disease risk. J Nutr, 2014. 144(1): p. 55-60.
    65. Fang, X., et al., Dose-response relationship between dietary magnesium intake and cardiovascular mortality: A systematic review and dose-based meta-regression analysis of prospective studies. J Trace Elem Med Biol, 2016. 38: p. 64-73.
    66. Xu, T., et al., Magnesium intake and cardiovascular disease mortality: a meta-analysis of prospective cohort studies. Int J Cardiol, 2013. 167(6): p. 3044-7.
    67. Ghalibaf, A.M., et al., Association between dietary copper and cardiovascular disease: A narrative review. J Trace Elem Med Biol, 2023. 80: p. 127255.