شناسایی رویکردها و مدل‌های پیش بینی عرضه و تقاضای پزشک در نظام سلامت کشورهای OECD

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ،گروه مدیریت و برنامه ریزی آموزشی دانشگاه علامه طباطبائی، تهران، ایران

2 استاد، دانشگاه علامه طباطبائی، گروه مدیریت و برنامه ریزی آموزشی، دانشگاه علامه طباطبائی، تهران، ایران

3 دانشیار، دانشگاه علوم پزشکی کرمان، گروه مدیریت، سیاست گذاری و اقتصاد سلامت ، دانشگاه علوم پزشکی کرمان ، کرمان، ایران

4 استادیار، دانشگاه علامه طباطبائی، گروه مدیریت و برنامه ریزی آموزشی ، دانشگاه علامه طباطبائی، تهران، ایران

چکیده

مقدمه: هدف از این پژوهش شناسایی رویکردها و مدل‌های پیش بینی عرضه و تقاضای پزشک در نظام سلامت کشورهای منتخبOECD است.
روش‌کار: جست‌وجوی نظام‌مند برای شناسایی پروژه ها و مقالات منتشر شده به زبان انگلیسی بین سال های 2010 تا 2024 در پایگاه‌های اطلاعاتی Sage Publishing ,Web of Science، Scopus، Eric، PubMed Central, OECDانجام شد. 18 پژوهش برای سنتز کیفی بر اساس معیارهای ورود و خروج در نظام سلامت کشورهایOECD انتخاب شدند.
نتایج: بیشترین مدل مورد استفاده برای پیش بینی عرضه و تقاضای پزشک مدل سازی از طریق رشد جمعیت بود. رویکرد غالب در پژوهش ها ، پیش بینی همزمان رویکرد مبتنی بر عرضه و تقاضای پزشک بود . بررسی میزان استفاده از سایر مدل ها نشان داد که 17 % مدل سازی سری زمانی ،17 % مدل سازی رگرسیون ، 12 % مدل سازی FTE پزشکان ، 12 % تکنیک دلفی، 12 % شبیه سازی سیستم دینامیک، 6% ، تکنیک شاخص های حجم کاری نیاز به نیروی انسانی ، 6% مدل کوهورت، 6% شبیه سازی مونت کارلو ، 6% مدل سرشماری ملی از پزشکان فعال ، 6% تکنیک نظرسنجی های ملی و 6% مدل سازی اقتصادسنجی را مورد استفاده قرار داده اند.در پژوهش های بررسی شده 56% از دو روش همزمان ادغام شده مدل سازی جهت پیش بینی عرضه و تقاضای پزشک استفاده شده است.
نتیجه‌گیری: هیچ رویکرد و مدل پذیرفته شده واحدی برای پیش بینی عرضه و تقاضای پزشک به دست نیامد.
کلمات کلیدی: برنامه ریزی نیروی انسانی ، پیش بینی تقاضا، پیش بینی عرضه ، OECD

کلیدواژه‌ها


عنوان مقاله [English]

Identifying approaches and models for predicting physician supply and demand in the health system of OECD countries

نویسندگان [English]

  • Maryam Maleki 1
  • Abbas Abbaspour 2
  • Somaye Nouri Hekmat 3
  • Samad Borzoian 4
1 PhD student, Department of Educational Administration and Planning, Allameh Tabataba'i University, Tehran, Iran
2 Professor, Allameh Tabatabaei University, Department of Educational Management and Planning, Allameh Tabatabaei University, Tehran, Iran
3 Associate Professor, Kerman University of Medical Sciences, Department of Health Management, Policy and Economics, Kerman University of Medical Sciences, Kerman, Iran
4 Assistant Professor, Allameh Tabatabaei University, Department of Educational Management and Planning, Allameh Tabatabaei University, Tehran, Iran
چکیده [English]

Introduction: The purpose of this research is to identify approaches and models for predicting the supply and demand of doctors in the health system of selected OECD countries.
Methodology: A systematic search was conducted to identify projects and articles published in English between 2010 and 2024 in Sage Publishing, Web of Science, Scopus, Eric, PubMed Central, OECD databases. 18 studies were selected for qualitative synthesis based on entry and exit criteria in the health system of OECD countries.
Results: The most used model for predicting the supply and demand of doctors was modeling through population growth. The dominant approach in the researches was the simultaneous prediction of the approach based on the supply and demand of doctors. Examining the amount of use of other models showed that 17% time series modeling, 17% regression modeling, 12% FTE modeling of doctors, 12% Delphi technique, 12% dynamic system simulation, 6% workload index technique 6% cohort model, 6% Monte Carlo simulation, 6% national census model of active doctors, 6% national survey technique and 6% econometric modeling have been used in the reviewed researches. 56% of the two integrated modeling methods have been used to predict the supply and demand of doctors.
Conclusion: No single accepted approach and model was found to predict the supply and demand of doctors.
Keywords: manpower planning, demand forecasting, supply forecasting, OECD

کلیدواژه‌ها [English]

  • Manpower planning
  • manpower demand forecast
  • manpower supply forecast
  • manpower planning models HHR
  • OECD
  1. Ali Khan Beik Zand, R. (2022). Investigating the effect of human capital on economic value added in Iran and providing suitable solutions for its enhancement. Journal of Economic Research (Growth and Sustainable Development), 22(1), 147-174.
  2. Mathis RL, Jackson JH. Human Resource Management. 13th ed. Boston: West-South; 2011.
  3. GBD 2019 Human Resources for Health Collaborators. (2022). measuring the availability of human resources for health and its relationship to universal health coverage for 204 countries and territories from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Published Online May 23, 2022, 399(10341), 2129-2154.
  4. Chang Y-H, Shiu M-N, Hsiung CA. Planning and evaluation in health workforce development: projection for the pharmacy workforce in Taiwan. J Formos Med Assoc. 2013; 112(12):733-4.
  5. Haller G, Heim C, Meier K, Clerici N, Combescure C, Ganter M, Schliessbach J, Kindler C, Kern C. Physician anaesthesia providers in Switzerland today and tomorrow: results of the National Anaesthesia Workforce Study (NAWOS). Swiss Med Wkly. 2021; 151:w30003.
  6. The Utah Medical Education Council.(2020). Utah Physician Workfoerce, 2020 Projection.Utah Medical Education Council, 2020, Salt Lake City, UT, umec.utah.gov
  7. Gomes, S. 2019. The demand for healthcare services and resources: patterns, trends and challenges in healthcare delivery. Doctoral Dissertation, Faculdade de Engenharia da Universidade do Porto
  8. Greuningen, M. (2016). Health workforce planning in the Netherlands: How a projection model informs policy regarding the general practitioner and oral health care workforces. Ipskamp
  9. Zhang X, Lin D, Pforsich H, Lin VW. Physician workforce in the United States of America: forecasting nationwide shortages. Hum Resour Health. 2020; 18(1):8.
  10. Parzonka K, Ndayishimiye C, Domagała A. Methods and tools used to estimate the shortages of medical staff in European countries—scoping review. Int J Environ Res Public Health. 2023; 20(4):2945.
  11. .11Vrouwe S, Jeschke M, Fish J. Are we headed for a shortage of burn care providers in Canada? J Elsevier. 2018 Jun; 44(4):1000-4.
  12. .12Asamani, J., Christmals, C., & Reitsma, G. The needs-based health workforce planning method: a systematic scoping review of analytical applications. Health Policy and Planning. 2021 Sep 9; 36(8):1325-1343.
  13. Sandelowski M, Barroso J. Handbook for synthesizing qualitative research. New York: Springer Publishing Company; 2007.
  14. .14General Medical Council. The state of medical education and practice in the UK: The workforce report 2022. 2022. Available from: https://www.gmc-uk.org/about/what-we-do-and-why/data-and-research/the-state-of-medical-education-and-practice-in-the-uk/archived-the-state-of-medical-education-and-practice-in-the-uk-reports.
  15. Schneider M, Krauss T, Köse A, Craig M, Hofmann U. Health workforce demand and supply Netherlands. European Institute of Health and Sustainable Development; 2022.
  16. .16 Association of American Medical Colleges. The Complexities of Physician Supply and Demand: Projections From 2019 to 2034. Washington, D.C.: AAMC by IHS Markit Ltd; 2021.
  17. .17Globerman S, Barua B, Hasan S. The supply of physicians in Canada: projections and assessment. Fraser Institute; 2018. Available from: https://www.fraserinstitute.org/studies/supply-of-physicians-in-canada-projections-and-assessment.
  18. Health Workforce Australia. (2014). Australia’s Future Health Workforce – Doctor Projection. Commonwealth and all State and Territory Health Ministers on 10 October 2014.
  19. Sarfati S, Ehrmann S, Vodovar D, Jung B, Aissaoui N. Inadequate intensive care physician supply in France: a point-prevalence prospective study. Ann Intensive Care. 2024 Jun 18; 14:92.
  20. Blank, J., Niaounakis, T., & Valdmanis, V. (2020). Biased technical change in hospital care and the demand for physicians. Journal of Human Resources for Health, 18(1), 60. 
  21. Scheffer M, Valero M, Cassenote A, Rosique A. How many and which physicians? A comparative study of the evolution of the supply of physicians and specialist training in Brazil and Spain. J Hum Resour Health. 2020 Apr 21; 18(1):30.
  22. Ishikawa, T., Fujiwara, K., Ohba, H., Suzuki, T., & Ogasawara, K. (2017). Forecasting the regional distribution and sufficiency of physicians in Japan with a coupled system dynamics-geographic information system model. Human Resources for Health, 15(1), 64.
  23. Hara K, Kunisawa S, Imanaka Y. Future projection of the physician workforce and its geographical equity in Japan: a cohort-component model. BMJ Open. 2018 Sep 17; 8(9):e023696.
  24. Liu J, Goryakin Y, Maeda A, Bruckner T, Scheffler R. Global health workforce labor market projections for 2030. Hum Resour Health. 2017; 15:11. Doi: 10.1186/s12960-017-0187-2.
  25. Yuji K, Imoto S, Yamaguchi R, Matsumura T, Murashige N, Kodama Y, Minayo S, Imai K, Kami M. Forecasting Japan's physician shortage in 2035 as the first full-fledged aged society. PLoS One. 2012; 7(11):e50410.
  26. Barber P, Valcárcel B. Forecasting the need for medical specialists in Spain: application of a system dynamics model. J Hum Resour Health. 2010 Oct 29; 8:24.
  27. Stordeur S, Léonard C. Challenges in physician supply planning: the case of Belgium. J Hum Resour Health. 2010 Dec 8; 8:28.
  28. Kyung Hwa S, Sun Hee L. A comparative analysis for projection models of the physician demand and supply among 5 countries. Health Policy and Management. 2017; 27(1):18-29.
  29. Ono T, Lafortune G, Schoenstein M. Health workforce planning in OECD countries: a review of 26 projection models from 18 countries. OECD Health Working Papers No. 62. OECD Publishing; 2013.
  30. Roberfroid D, Leonard C, Stordeur S. Physician supply forecast: better than peering in a crystal ball? Hum Resour Health. 2009; 7:10.